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ABSTRACT OF THE DISSERTATION
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Text classification typically performs best with large training sets, but short texts are very

common on the World Wide Web. Can we use resampling and data augmentation to con-

struct larger texts using similar terms? Several current methods exist for working with short

text that rely on using exte2rnal data and contexts, or workarounds.

Our focus is to test a new preprocessing approach that uses resampling, inspired by the

bootstrap, combined with data augmentation, by treating each short text as a population and

sampling similar words from a semantic space to create a longer text. We use blog post titles

collected from the Technorati blog aggregator as experimental data with each title appearing

in one of ten categories. We first test how well the raw short texts are classified using a variant

of SVM designed specifically for short texts as well as a supervised topic model and an SVM

model that uses semantic vectors as features. We then build a semantic space and augment

each short text with related terms under a variety of experimental conditions. We test the

classifiers on the augmented data and compare performance to the aforementioned baselines.

The classifier performance on augmented test sets outperformed the baseline classifiers in

most cases.
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CHAPTER 1

Introduction

1.1 Motivation and Objectives

The World Wide Web (WWW, or “Web”) has greatly changed the way humans consume,

produce, process and think about information. Since its humble beginnings in 1989 and

its advent as the major Internet protocol in the mid 1990s, the Web has become a virtual

world where users not only consume data, but also produce their own data[11]. In turn,

statisticians, computer scientists, and data scientists mine through all of this user generated

data and analyze it to build models to make decisions based on the data. Such local deci-

sions influence the content the user sees on subsequent visits and allows for a more personal,

interactive experience local to the user. Some example usages of such data are personalized

newsfeeds, recommendation systems for e-commerce1 and music listening2, targeted adver-

tising and tailored search engine results3. Much of these systems rely on two specific types

of information: network/graph data, and text data. This manuscript will focus heavily on

working with text data, and only mention network/graph data in passing.

Statistics is the study of uncertainty and random variation[40]. Humans are not perfect,

and thus they produce data that contain a lot of noise. Statistical methods assist in filtering

noise out of data, but the ubiquity, massiveness, and uncertainty presented by data pro-

duced by humans creates many statistical problems, many of which have yet to be studied

thoroughly. Blogs and social networking sites produce several challenges since the users are

1 http://www.amazon.com

2 http://www.pandora.com

3 http://www.google.com
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permitted to freely express themselves[134][110][10]. First, social network users typically

produce text that is timely, but does not necessarily represent meaningful content. Second,

users are prone to express emotions and sentiment rather than content. Third, users usually

do not respect proper English grammar or spelling in the content that they provide. Most

importantly, much text provided by users is short. Recall from Statistics 101 that large sam-

ple sizes typically yield the best results in statistical significance testing and other statistical

models. This manuscript attempts to improve upon existing methods for extracting meaning

from texts by extending NLP and statistical methods into the domain of short texts.

The Web is full of short texts. Some examples of short texts include Facebook posts and

comments, web forum posts, instant and private messages, ad creatives, and much more.

Additionally, user generated content on the Web typically follows a structure imposed by

the entity providing the service; for example, a blog post contains a short title, a short

description and then a longer post body. Twitter is perhaps the most well-known repository

of short texts because each “tweet” or “status update” contains no more than 140 characters4.

Twitter also provides several interesting features to the NLP researcher that other services

do not offer. Starting in 2009, Twitter allowed users to create “lists” of users — groups of

users that a human labels as discussing a particular topic. Naturally, Twitter lists provide

an ad-hoc labeling mechanism for Twitter users[92]. Users can also tag their tweets with

hashtags, which is the combination of a hash symbol (#) and a word, thus providing a human

induced labeling of the tweet’s content[41]. Since their inception on Twitter, hashtags have

spread to other services such as Facebook5, Instagram6 and others

Tweets and other short texts from user generated content sites pose significant interesting

challenges to researchers. Many users post updates that do not contain any meaningful

content. They may post mundane content (i.e. what they are currently doing) or they may

be spamming. Due to character limits on services like Twitter and the “quick” and informal

nature of online communication, analyzing content on the individual level is difficult. The

4 https://support.twitter.com/articles/15367

5 http://www.facebook.com

6 http://www.instagram.com
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limitations complicate the user’s message by requiring them to use contractions, drop vowels,

or use abbreviations to make their point[147]. Additionally, users do not use perfect English

grammar, often misspell words, or use the wrong form of a homophone (i.e. they’re vs. their

vs. there)[50]. Some users may not even make any sense to other human users. All of these

issues must be resolved by the researcher prior to attempting to train and test a classifier.

The early 1990s gave rise to the first so-called topic model. From the 1990s to the present,

several topic models have been developed that can mathematically model text and classify

a text into one or sometimes multiple topics based on the words that appear in the text.

As with any statistical model however, the assumption is that there is large enough sample

size – enough text – to present in the training phase. With tweets and other short texts,

small sample sizes pose a large challenge that will be discussed in this manuscript. One

common method used to estimate model parameters in statistics is the bootstrap[48]. In

this manuscript, a data augmentation method inspired by the bootstrap will be applied to

simultaneously attempt to solve the short text problem and also to create a framework to

improve classification.

1.2 Manuscript Outline

This manuscript is organized as follows. Topic models and classification methods for written

text are introduced in Chapter 2 and will provide the motivation for this work. In Chapter 3

we review several existing methods for short text augmentation, query expansion and data

augmentation. In Chapter 4 the statistical bootstrap is discussed for its use with samples

of small size. In Chapter 5 a data augmentation method motivated by the bootstrap is

proposed as a method for augmenting short texts and several experiments are introduced.

The results of the experiments are presented in Chapter 6. Finally, future work is discussed

in Chapter 7.
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1.3 Individual Contributions

The major individual contributions to the field described in this manuscript are discussed in

Chapters 4, 5 and 6, namely a method for augmenting short texts by resampling terms from

the semantic space computed from a coarse topic model. This proposed method is applied

to short texts for the later purpose of classification in this research.
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CHAPTER 2

Advances in Topic Modeling and Classification

Topic modeling refers to algorithms that attempt to extract the theme of textual con-

tent. Topic modeling algorithms are useful for document retrieval, identification of trend-

ing topics, novel event detection, document classification, language modeling and machine

translation[61]. This manuscript focuses on document classification. In this chapter, we

discuss the history of topic modeling, beginning with elementary principles.

2.1 Näıve Bayes Classifiers

The Näıve Bayes classifier has demonstrated great success in NLP domains such as language

identification[66], sentiment analysis[130], and even topic identification [118]. According to

[73], the Näıve Bayes model is useful when the feature space is high, and when the features

Fd are independent conditioned on a particular class ck. The fact that Näıve Bayes has been

so successful in NLP is curious because words in the English language are not independent

given the structure of a sentence[45]. For example, a grammatically correct English sentence

containing an adjective will have a noun following the adjective[113]. Thus, there is clear

dependence among words in grammatically correct English sentences. Still, Näıve Bayes

has received appreciable consideration in the NLP community and has served as a baseline

classification algorithm for research in the field[113].
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Given features f1, f2, . . . , f|V |, the Näıve Bayes classifier[73] selects the most likely class

label c∗ as follows:

c∗ = argmaxck∈CP (ck|fi)

= argmaxck∈CP (ck)

|V |∏
i=1

P (fi|ck) (2.1)

where P (ck) is the prior probability of class ck and |V | is the number of features (the size of the

vocabulary). Then the posterior probability, as estimated from feature presence indicators,

that a particular document belongs to class ck is

P̃ (ck|fi) =
P̃ (ck)

∏|V |
i=1 P̃ (fi|ck)∑

k′ P̃ (ck′)
∏|V |

i=1 P̃ (fi|ck′)

In the standard incarnation of Näıve Bayes, sometimes referred to as Bernoulli Näıve

Bayes[120], the probabilities are computed with respect to the number of documents in a

class ck that contain feature fi. The number of times fi appears in the document is not taken

into account – only its binary presence. Then the maximum likelihood estimate for P (fi|ck)

is given as

P̃ (fi|ck) =
nd(fi, ck)

|D|
(2.2)

where nd(fi, ck) is the number of documents in class ck containing the feature fi and |D| is

the total number of documents in the corpus. One issue that arises when using Näıve Bayes

with text is sparsity in the feature set which causes two problems[131]:

1. computing posterior probabilities can cause underflows due to the vast number of

multiplications and,

2. if a feature never appears in a document within a certain class in the training data,

probability computations yield meaningless results.
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To resolve the underflow issue, it is customary to take the logarithm of the product in

(2.1) instead, yielding the following decision rule

c∗ = argmaxck∈C logP (ck|fi)

= argmaxck∈C

logP (ck) +

|V |∑
i=1

logP (fi|ck)


To resolve the problem with zeros in the computation of probabilities where a feature fi never

appears in a document in class ck, the common approach is to use Laplace smoothing[113]

by which a count of zero is replaced by a slightly larger but negligible number αfi for each

feature, usually 1. The smoothed version of (2.2) now becomes:.

P̃ (fi|ck) =
nd(fi, ck) + αfi
|D|+

∑
i αfi

2.1.1 Multinomial Näıve Bayes Classifier

The standard incarnation of Näıve Bayes treats a feature fi as either appearing in a document

in class ck or not. Multinomial Näıve Bayes (MNB) models the terms in a document d as

coming from a multinomial distribution, rather than a multivariate Bernoulli distribution

and includes the number of times a feature appears in a document rather than simply its

presence/absence. In their paper [118], McCallum, Nigam et al. showed that MNB performed

better in terms of accuracy due to the inclusion of frequency information. The probability

of seeing a document d, consisting of features Fd, in class ck is

P (Fd|ck) =
(
∑

i n(fi, d))!∏
i n(fi, d)!

∏
i

P (fi|ck)n(fi,d)

where n(fi, d) is the number of times feature fi appears in document d. The classification

rule is now

c∗ = argmaxc

logP (ck) +

|V |∑
i=1

n(fi, d) logP (fi|ck)


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where P̃ (fi|ck) is estimated from the expectation of a Dirichlet prior as

P̃ (fi|ck) =
n(fi, ck) + αfi
Nwck

+
∑

i αi
(2.3)

and n(fi, ck) is the number of occurrences of fi in documents in topic ck, αfi is a smoothing

parameter and Nwck
is the total number of word occurrences in topic ck. Finally, P (ck) is

estimated as

P̃ (ck) =
Ndck

|D|

leading to the final form for the classification rule

c∗ = argmaxc

log
Ndck

|D|
+

|V |∑
i=1

n(fi, d) logP (fi|ck)


2.1.2 Other Variations of the Näıve Bayes Classifier

Researchers have developed finer variations of Näıve Bayes to attempt to resolve some of the

failed assumptions involved in using Näıve Bayes with text data.

In [149], Rennie et al. discuss a major problem with Näıve Bayes namely the systemic bias

caused by having an unequal number of training samples in each class. When the number of

samples in one class is much greater than the others, predictions tend to be skewed towards

the larger class. The researchers made several marked improvements to Näıve Bayes in a

method called Term Weighted Complementary Näıve Bayes (TWCNB). First, the authors

change the prediction problem to focus on all classes excluding the class of interest – the

inverse problem. They replace (2.3) with

P (ck|F ) =
n(fi, ck) + αfi
Nwck

+
∑

i αi
(2.4)

where ck refers to the set of classes excluding k. In their paper, this variation is referred to

as Complementary Näıve Bayes (CNB). Second, the researchers noted that the distribution

of term counts exhibited a power law and they proposed a transformation to coerce the
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data so that it would exhibit more of a multinomial behavior. Finally, they normalized by

document length and frequency. All of these transformations yield what the authors called

Term-Weighted Complementary Näıve Bayes (TWCNB) and is presented as Algorithm 1.

Term Weighted Complementary Näıve Bayes is implemented in Mahout[55] as cbayes and

also in scikit-learn[132] as MultinomialNB.

One other variation of Näıve Bayes for text classification is Poisson Näıve Bayes from

[93] where the researchers use the Poisson distribution as the generative distribution of the

text. If X is a random variable corresponding to the number of times a particular feature

appears then for each document

P (Fd) =

|V |∏
i=1

P (Xi = fi) =

|V |∏
i=1

e−λiλfii
fi!

The authors also derive the Näıve Bayes problem to use the new distribution.

P (ck|F ) =
P (F |ck)P (ck)

P (F )

=
P (F |ck)P (ck)

P (F |ck)P (ck) + P (F |c)P (c)

=

P (F |ck)
P (F |ck)

· P (ck)

P (F |ck)
P (F |ck)

· P (ck) + P (ck)
(2.5)

Then by taking

zck =

|V |∑
i=1

log

(
P (Xi = fi|ck)
P (Xi = fi|c̄k)

)

=

|V |∑
i=1

log

(
e−λiλfii
e−µiµfii

)

Equation 2.5 becomes

P (ck|F ) =
ezckP (ck)

ezckP (ck) + P (c̄k)
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Algorithm 1: Steps for Document Classification with Term Weighted Complementary Näıve Bayes

(TWCNB)

Note that this computation is dependent on the entire corpus, thus there is a small change in
notation to take both features and documents into account.

For some set of training documents D:

1. Compute the TF-IDF transform, denoted tij for each feature.

tij = log (fij + 1)× |D|
|d ∈ D : fij ∈ d|

where |d ∈ D : fij ∈ d| is the number of documents containing fij .

2. Normalize by document length.

t̃ij =
tij√∑
i′ (ti′j)

2

3. Use the complement classes.

ωik = log

∑
j:dj /∈ck t̃ij + αi∑

j:dj /∈ck
∑

i′ t̃i′j + α

where αi is a smoothing parameter and α is the sum. The condition j : dj /∈ ck denotes
the set of documents that are not in class ck.

4. Normalize these weights and store.

ω̃ik =
ωik∑
i′ ωi′k

Then for some unseen testing document d′j , let fij be the usual frequency of word i in document
j. Then the predicted class for d′j is given by

c∗ = arg min
c

∑
i

fijω̃ic

Similar to Multinomial Näıve Bayes, the researchers avoid the zero-count problem problem

using a modified count.

f̃i =
fi + αfi

Nwd
+
∑

i αi
· τ

where αfi serves the same purpose as in (2.4) and τ is a large integer that makes f̃i an

integer. λi is the Poisson mean for fi in class ck and µi is the Poisson mean for fi in class ck

and are estimated from modified weights f̃i.

λ̃i =
∑
d∈Dck

P̃ (Fd|ck) · f̃id µ̃i =
∑
d∈Dck

P̃ (Fd|ck) · f̃id
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where

P̃ (Fd|ck) =
β

Ndck

+ (1− β)
Nwdk∑

d′∈Dck
Nwd′

That is, λi and µi are the average number of the counts for classes ck and ck respectively. In

the same work, Kim, Seo et al. also studied the effect of β7 and introduced a special feature

weighting method similar to that in [149]; for more information, see [93]. The researchers

found that combining Poisson Näıve Bayes with their feature weighting method yielded a

modest 4.5% improvement in MicroF1 performance – from 72% for Multinomial Näıve Bayes

to approximately 76.5%.

2.2 Latent Semantic Analysis (LSA)

The first sophisticated method for topic modeling that was designed specifically for text was

Latent Semantic Analysis, sometimes instead called Latent Semantic Indexing (LSI)[43].

For the purpose of this manuscript, LSA and LSI will be used interchangeably – though

LSI is typically the acronym used for information retrieval discussion, the terms are used

interchangeably in most literature. The authors discuss that their motivation for developing

LSA was that typical keyword matching systems do not take synonymy and polysemy into

account when retrieving or modeling documents.

The authors use the term synonymy to refer to the case where many words are used to

describe a particular object or concept. Human raters use the same words to describe a

particular object less than 20% of the time [57], which Deerwester et al. states reduces recall

performance in a document retrieval system. The word polysemy is used in their work to

describe the inverse phenomenon – the case of words having multiple meanings depending on

context. The researchers state that polysemy reduces precision performance in a document

retrieval system.

Latent Semantic Analysis (LSA) works as follows. Let X be a |V | × |D| matrix where

|V | is the number of terms in a previously curated vocabulary and |D| is the number of

7 β is denoted as α in Kim, Seo et. al. but modified for this manuscript to avoid confusion with other uses.
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documents in the corpus. This matrix is referred to as a term-document matrix in the topic

modeling literature. Each element Xij is some measure that relates term i to document

j such as word frequency as in [43] or TF-IDF[154] as in [186]. Using the singular value

decomposition[63], the term-document matrix is decomposed as

X ≈ X̂ = WSD′

where W and D contain the left and right singular vectors respectively and S is a diagonal

matrix containing the singular values of X. It is important to recognize that W and D can

be switched in the equation depending on how rows and columns are defined in X. Note that

W contains the eigenvectors of XX′ and D contains the eigenvectors of X′X. It is important

to note that XX′ and X′X contain, as elements, a measure of similarity between terms and

between documents respectively in the original vector space. To reduce the dimensionality of

the original data and to introduce generality into the data we only retain the top k singular

values and set the rest to zero. The result is a reduced rank matrix X̂k that encapsulates

the relationship among terms and documents.

X̂k = WkSkD
′
k

Then one can compare terms and documents respectively in this space using

X̂kX̂
′
k = WkSk

2W′
k

X̂′X̂ = DkSk
2D′k

Given a query, a set of words, one can retrieve similar documents to the query by first

constructing what the authors call a pseuodocument Dq– a vector of terms corresponding to

the text in the query. It is important to note that only terms in the query that also appear

in V may be included.

Dq = X′qWS−1k

12



Then, relevant documents can be discovered by computing a similarity metric such as the

cosine similarity[114] defined as

cos θ =
vi · vj
||vi||||vj||

where vi and vj represent the row or column corresponding to two terms or two documents

respectively.

Latent Semantic Analysis is an important component to this manuscript because LSA

is used as the population from which we resample words to create augmented bags-of-words

and will be discussed later. The researcher refers to this as a semantic space. It preserves

the relationship between terms and documents in such a way that differences between terms,

between documents and between term/document pairs can be measured. One major pitfall of

LSA and algorithms that rely on singular value decomposition is computational complexity;

SVD has a runtime of O
(
(|V |+ |D|)2 k3

)
where k is the number of dimensions in the reduced

semantic space[100]. Instead, optimizations using algorithms such as Lanczos method[152]

provide a reduced runtime of O(nk) where n is the number non-zero entries in the sparse

term/document matrix X.

2.3 Probabilistic Latent Semantic Analysis (PLSA)

As an attempt to correct some of the deficiencies involving LSA, particularly the computation

complexity of SVD, Hofmann developed a stochastic version of LSA called Probabilistic

Latent Semantic Analysis (PLSA)[78]. Based on the review of the literature, PLSA seemed

to be the first widely accepted generative model for topic modeling.
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PLSA is based on the aspect model[155] and has the following form

P (d, w) = P (d)P (w|d)

= P (d)

 ∑
k∈{1,...,K}

P (w|z = k)P (z = k|d)


= P (d)

 ∑
k∈{1,...,K}

P (w|z = k)
P (z = k, d)

P (d)


= P (d)

 ∑
k∈{1,...,K}

P (w|z = k)
P (d|z = k)P (z = k)

P (d)


=

∑
k∈{1,...,K}

P (w|z = k)P (d|z = k)P (z = k)

where z is a random variable denoting a topic assignment and k now refers to a partic-

ular topic in a set of topics. The topic assignments are estimated using the Expectation

Maximization (EM) algorithm as follows in Algorithm 2.

Algorithm 2: Expectation Maximization (EM) Algorithm for PLSA

1. Make an initial guess of P (z|d,w), P (w|z), P (d|z), P (z).

2. Expectation Step (E Step): for all w, d, z compute topic probabilities.

P (z|d,w) =
P (z)P (d|z)P (w|z)∑

z′∈Z P (z′)P (d|z′)P (w|z′)

3. Maximization Step (M Step): for all w, d, z compute new values for the parameters.

P (w|z) ∝
∑
d∈D

n(d,w)P (z|d,w)

P (d|z) ∝
∑
w∈V

n(d,w)P (z|d,w)

P (z) ∝
∑
d∈D

∑
w∈V

n(d,w)P (z|d,w)

4. Repeat steps 2 and 3 until convergence.

Note that n(d,w) is the number of times term w is used in document d.

For a full derivation of the likelihood for PLSA, the ensuing EM algorithm for parameter

estimation and improvements using tempered EM, see [79]. The graphical model for PLSA
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is shown as Figure 2.1. Hofmann compared PLSA with LSA and also an ensemble of PLSA

models. On various corpora, PLSA saw an average increase in precision of 34% with precision

improvement across the board, and the ensemble of PLSA models yielded an average increase

in precision of 46% over LSA with precision improvement across the board.

Nwdj

|D|

wijzijdij

Figure 2.1: Graphical model depicting Probabilistic Latent Semantic Analysis (PLSA).

PLSA has been used in a variety of different topic modeling and information retrieval

contexts outside of standard text. In [23], researchers used PLSA for object and scene

categorization. PLSA and other topic models have also found a loyal home in the field

of digital advertising. In [170], Wang et al. used PLSA to categorize concepts presented

in video advertisements by dividing scenes and using particular keyframes to generate a

“video-based bag-of-words model.” Wu et al. used PLSA to improve user segmentation for

behavioral targeting[178]. In their work, the researchers found that including PLSA in user

segmentation yielded higher precision (clickthrough-rate) while other traditional methods

such as k-means and CLUTO yielded higher recall. This finding lead to the conclusion that

the precision of traditional methods could be increased by including more users into each

segment, but that with PLSA the extra users were not necessary and thus PLSA provided a

more efficient method. In [160], Son et. al. used a variation of PLSA for comparing locations

based on geographic topics and features. The most popular PLSA implementation appears

in Lemur8 (C++).

2.4 Latent Dirichlet Allocation

A method that has gained and maintained a lot of traction within the natural language

processing community is Latent Dirichlet Allocation[19]. Latent Dirichlet Allocation, or

8 http://www.lemurproject.org/
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LDA as it will be referred to in this manuscript, is a generative Bayesian graphical model for

topic discovery. Theoretically, LDA and PLSA are very similar and they are equivalent in the

sense that PLSA is LDA with a uniform Dirichlet prior[62]. In [161], Song notes that LDA

is more robust on sparse data and a much larger feature space suggesting it performs better

for text data. In Blei et al.’s original paper [19], they note that the number of parameters to

estimate in PLSA increases linearly with the number of training documents and can lead to

severe overfitting. It is also difficult to generalize PLSA to new test documents because such

requires an expensive process called “folding-in”[174]. LDA fixes these issues by establishing

distributions over topics rather than requiring a matrix of probabilities.

The goal in Latent Dirichlet Allocation is to estimate the posterior distribution P (z|w)

for a set of documents where z is a vector of topic assignments and w is a matrix or words

in documents. The graphical model from [19] appears in Figure 2.2 and LDA is described

as follows.

K

Nwdj

|D|

wij

φkβ

zijθjα

Figure 2.2: Graphical model depicting Latent Dirichlet Allocation (LDA).

We initially have a corpus D containing documents dj, 1 ≤ j ≤ |D| where each document

contains Nwdj
word occurrences from a fixed vocabulary V of size |V |. Let K be the number

of topics we wish to discover. zij ∈ {1, . . . , K} is the topic to which word occurrence i in

document dj is currently assigned. The parameter θj is a vector containing, for document

dj, the probability distribution over the K topics. Over the entire corpus, we then have

the model parameter θ which is a matrix containing topic distributions for each of the |D|

documents. That is, θ is the probability that a particular document d is assigned to topic

k. The parameter φk is the vector containing the probability distribution over the |V | words

within topic k and the model parameter φ is a matrix containing probability distributions

over all |V | words, conditioned on topic k. Finally, the hyperparameters α and β control the
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nature of the priors of the LDA model and will be discussed in more detail later; for now

we can assume they are arbitrary and fixed. LDA assumes that documents are generated

by the process denoted in Algorithm 3, though in practice the sampling procedure proceeds

as described in Algorithm 4 after first randomly assigning all words in all documents to

arbitrary topics.

Algorithm 3: Generative process for Latent Dirichlet Allocation (LDA).

1. Draw the topic distribution θj ∼ Dir(α) for each document j.

2. Draw the word distribution φk ∼ Dir(β) for each topic k.

3. For each word wij such that i ∈
{

1, . . . , Nwdj

}
(a) Sample a topic zij ∼ Mult(θj).

(b) Sample a word wij ∼ Mult(φzij ).

The parameters for the LDA model can be derived using Gibbs sampling [69], variational

Bayesian inference[19], or expectation propagation[124]. This manuscript will focus on the

Gibbs sampling approach because it is one the most popular methods used in the literature,

is the simplest to implement and in [6] has been shown to perform just as well, and sometimes

better than variational Bayes estimation especially for large K. In the same work, Asuncion

found that Variational Bayes and its collapsed variant are sometimes not as accurate as

collapsed Gibbs sampling, but they are deterministic and faster to converge.

2.4.1 Parameter Estimation with the Collapsed Gibbs Sampler

In this section, we derive the collapsed Gibbs sampler for the LDA model. A complete step-

by-step derivation is difficult to find in the literature, thus it is provided here for readers.

What follows is adapted from the derivation provided in [28]. With Gibbs sampling, we

do not explicitly estimate the model parameters φ or θ. Instead, we consider the posterior

probability distribution of the assignment of words to topics, denoted P (z|w) and estimate

the parameters from it.
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From the definition of conditional probability,

P (z|w) =
P (w, z)

P (w)

Note that φ is a collection of K multinomial distributions over the |V | words. By placing

a Dirichlet prior on φ, which is conjugate to the multinomial distributions φ and θ, we

can compute the joint distribution P (w, z) by integrating out the parameters φ and θ. To

construct a collapsed Gibbs sampler, we want to compute the probability of assigning topic

zij to wij given all of the other existing assignments of topics to word occurrences except the

one at the moment of sampling.

P (zij|zij,w, α, β) =
P (zij, zij,w|α, β)

P (zij,w|α, β)

∝ P (zij, zij,w|α, β)

but note that zij, zij = z so we get

= P (w, z|α, β)

Now we must find the form of P (w, z|α, β) to complete the sampler. Based on conjugacy,

we have that

P (w, z) =

∫ ∫
P (w, z, θ, φ|α, β)dθdφ

=

∫ ∫
P (φ|β)P (θ|α)P (z|θ)P (w|φ, z)dθdφ

then from the independence suggested by the graphical model,

=

∫
P (z|θ)P (θ|α)dθ ×

∫
P (w|φ, z)P (φ|β)dφ
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which from the definition of the distributions is,

=

∫ |D|∏
j=1

P (z·j|θj)P (θj|α)dθ ×
∫ K∏

k=1

P (φk|β)

|D|∏
j=1

Nwdj∏
i=1

P (wij|φzij)dφk

Now we can pull some of the products outside of the integrals,

=

|D|∏
j=1

∫
P (z·j|θj)P (θj|α)dθj ×

K∏
k=1

∫
P (φk|β)

|D|∏
j=1

Nwdj∏
i=1

P (zij|φzij)dφk

Now substitute in the PDFs for the distributions defined in the LDA model specification

presented in Algorithm 3:

=

|D|∏
j=1

∫ Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
jk

Nwdj∏
i=1

θjzijdθj×

K∏
k=1

∫ Γ
(∑|V |

i=1 βi

)
∑|V |

i=1 Γ(βi)

|V |∏
i=1

φβi−1
ik

|D|∏
j=1

Nwdj∏
i=1

φwijzijdφk

Next, we can remove the dependency on Nwdj
by recognizing that zij is simply an integer

representing a topic assignment. If we “regroup” terms based on these topics and let n·jk

be the number of word occurrences in dj has been assigned to topic k, and let ni·k be the

number of times the word wi has been assigned to topic k regardless of document then we

can reduce the expression further.

=

|D|∏
j=1

∫ Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
jk

K∏
k=1

θ
n·jk
jk dθj ×

K∏
k=1

∫ Γ
(∑|V |

i=1 βi

)
∑|V |

i=1 Γ(βi)

|V |∏
i=1

φβi−1
ik

|V |∏
i=1

φni·k
ik dφk

=

|D|∏
j=1

∫ Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

θ
αk−1+n·jk
jk dθj ×

K∏
k=1

∫ Γ
(∑|V |

i=1 βi

)
∑|V |

i=1 Γ(βi)

|V |∏
i=1

φβi−1+ni·k
ik dφk
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To cancel out the integrals (by getting them to sum to one), we must reorganize the inside

of the integrals so that they match known probability distributions. At the same time, we

cannot change the value of the expression. We do the following:

=
|D|∏
j=1

∫ Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

Γ

(
K∑

k=1
αk+n·jk

)
K∏

k=1
Γ(αk+n·jk)

K∏
k=1

Γ(αk+n·jk)

Γ

(
K∑

k=1
αk+n·jk

) K∏
k=1

θ
αk−1+n·jk
jk dθj×

K∏
k=1

∫ Γ
(∑|V |

i=1 βi

)
∑|V |

i=1 Γ(βi)

Γ

(
|V |∑
i=1

βi+ni·k

)
|V |∏
i=1

Γ(βi+ni·k)

|V |∏
i=1

Γ(βi+ni·k)

Γ

(
|V |∑
i=1

βi+ni·k

) |V |∏
i=1

φβi−1+ni·k
ik dφk

=
|D|∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

Γ(αk+n·jk)

Γ

(
K∑

k=1

αk+n·jk

) ∫ Γ

(
K∑

k=1
αk+n·jk

)
K∏

k=1
Γ(αk+n·jk)

K∏
k=1

θ
αk−1+n·jk
jk dθj×

K∏
=1

Γ
(∑|V |

i=1 βi

)
∏|V |

i=1 Γ(βi)

|V |∏
i=1

Γ(βi+ni·k)

Γ

(
|V |∑
i=1

βi+ni·k

) ∫ Γ

(
|V |∑
i=1

βi+ni·k

)
|V |∏
i=1

Γ(βi+ni·k)

|V |∏
i=1

φβi−1+ni·k
ik dφk

=
|D|∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

Γ(αk+n·jk)

Γ

(
K∑

k=1

αk+n·jk

) ∫ Dir (θj|αk + n·jk) dθj︸ ︷︷ ︸
=1

×

K∏
k=1

Γ
(∑|V |

i=1 βi

)
∏|V |

i=1 Γ(βi)

|V |∏
i=1

Γ(βi+ni·k)

Γ

(
|V |∑
i=1

βi+ni·k

) ∫ Dir (φk|βi + ni·k) dφk︸ ︷︷ ︸
=1

=
|D|∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

Γ(αk+n·jk)

Γ

(
K∑

k=1
αk+n·jk

) × K∏
k=1

Γ
(∑|V |

i=1 βi

)
∏|V |

i=1 Γ(βi)

|V |∏
i=1

Γ(βi+ni·k)

Γ

(
|V |∑
i=1

βi+ni·k

)

Now we can eliminate terms that involve only the hyperparameters and not the data, to get

the following:

∝
|D|∏
j=1

∏K
k=1 Γ(αk + n·jk)

Γ
(∑K

k=1 αk + n·jk

) × K∏
k=1

∏|V |
i=1 Γ(βi + ni·k)

Γ
(∑|V |

i=1 βi + ni·k

)
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Recall that the collapsed Gibbs sampler chooses a topic for some sample point (a word and

document occurrence), say x and y. Then we split up the first product over documents

into two factors – one relating to the sampling position x and one relating to all sampling

positions not involving x.

=
∏
j 6=y

∏K
k=1 Γ(αk + n·jk)

Γ
(∑K

k=1 αk + n·jk

) × ∏K
k=1 Γ(αk + n·yk)

Γ
(∑K

k=1 αk + n·yk

)
×

K∏
k=1

∏
i 6=wxy

Γ(ni·k + βi)Γ(nwxy ·zxy + βwxy)

Γ(
∑|V |

i=1 ni·k + βi)

Since the collapsed Gibbs sampler only depends on sampling point (x, y), we can remove all

terms that are not directly dependent on the sampling point.

=

∏K
k=1 Γ(αk + n·yk)

Γ
(∑K

k=1 αk + n·yk

) × K∏
k=1

Γ(nwxy ·k + βwxy)

Γ(
∑|V |

i=1 ni·k + βi)

The final “trick” to the derivation is to introduce a new count variable n′ijk similar to nijk but

excluding the current word/document pair sampling point (x, y). Then for arbitrary i, j, k we

have that nijk = n′ijk + 1. Note that we break up the products to account for the fact that

we are analyzing the current sample point separate from the others.

=

∏
k 6=zxy Γ(αk + n′·yk)Γ(αzxy + n′·yk + 1)

Γ(1 +
∑K

k=1 αk + n′·yk)

×
∏
k 6=zxy

Γ(n′wxy ·k + βwxy)

Γ(
∑|V |

i=1 n
′
i·k + βi)

Γ(n′·wxy ·zxy + βwxy + 1)

Γ(1 +
∑|V |

i=1 n
′
i·zxy + βi)

=

∏
k 6=zxy Γ(αk + n′·yk)Γ(αzxy + n′·yk)(αzxy + n′·yk)

Γ(1 +
∑K

k=1 αk + n′·yk)

×
∏
k 6=zxy

Γ(n′wxy ·k + βwxy)

Γ(
∑|V |

i=1 n
′
i·k + βi)

Γ(n′wxy ·zxy + βwxy)(n′wxy ·zxy + βwxy)

Γ(
∑|V |

i=1 n
′
i·zxy + βi)

(∑|V |
i=1 n

′
i·zxy + βi

)
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Then we wrap some of the Gamma terms back into their original products:

=

∏K
k=1 Γ(αk + n′·yk)(αzxy + n′·yzxy)

Γ(1 +
∑K

k=1 αk + n′·yk)

×
K∏
k=1

Γ(n′wxy ·k + βwxy)

Γ(
∑|V |

i=1 n
′
i·k + βi)

(n′wxy ·zxy + βwxy)(∑|V |
i=1 n

′
i·zxy + βi

)
=

∏K
k=1 Γ(αk + n′·yk)(αzxy + n′·yzxy)

Γ(
∑K

k=1 αk + n′·yk)(
∑K

k=1 αk + n′·yk)

×
K∏
k=1

Γ(n′wxy ·k + βwxy)

Γ(
∑|V |

i=1 n
′
i·k + βi)

(n′wxy ·zxy + βwxy)(∑|V |
i=1 n

′
i·zxy + βi

)
Finally, note that most of the remaining terms are constant over all zxy and can be dropped

yielding:

∝
(αzxy + n′·yk)(n

′
wxy ·zxy + βwxy)(∑|V |

i=1 n
′
i·zxy + βi

)(∑K
k=1 αk + n′·yk

)
=

(αzxy + n′·yk)(n
′
wxy ·zxy + βwxy)(

n′··zxy +
∑|V |

i=1 βi

)(
n′·y· +

∑K
k=1 αk

) (2.6)

Recall that the hyperparameters α and β can take on a single uniform value, or can be

represented as a K-vector and a |V |-vector respectively. The previous derivation assumed

differing values for different topics and words respectively. If we restrict α and β to be a

value such that α = α1 = α2 = . . . = αK and β = β1 = β2 = . . . = βV then the conditional

probability reduces to

∝
(α + n′·yk)(n

′
wxy ·zxy + β)(

|V |β +
∑|V |

i=1 n
′
i·zxy

)(
Kα +

∑K
k=1 n

′
·yk

) =
(α + n′·yk)(n

′
wxy ·zxy + β)(

|V |β + n′··zxy

) (
Kα + n′·y·

) (2.7)
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where

θ̂jk =
α + n′·jk
Kα + n·jk

and

φ̂ik =
n′i·k + β

n′··k + |V |β

The selection of the hyperparameters for LDA has not yielded much practical discussion

in the literature. Blei explains in [18] that for a symmetric Dirichlet distribution, lower values

of α yield sparser topics such that documents contain a small number of topics, or possibly

even only one. Higher values of α encourage more mixing with each document containing a

large proportion of the topic space. For the asymmetric Dirichlet distribution, higher values

of α impose a more specific topic distribution for each document. Likewise, Blei explains

that higher values for β place more words into a topic making each topic perhaps more

vague; lower values for β cluster less words into a topic. In the asymmetric case, higher

values for β impose a more specific collection of words into a specific topic. In summary, in

the asymmetric case, certain topics and words are more likely a priori. Most of the literature

discusses the symmetric Dirichlet case, something that was also noticed and discussed in

[168]. In [6], Asuncion at al. discuss several data-driven methods for estimating α and

β including placing a Gamma prior on the hyperparameters and using Minka’s fixed-point

iterations[125], Newton-Raphson[169], sampling[163] and using grid search with a validation

set. Asuncion et al. also found that hyperparameter selection depends on the method used

to estimate the parameters for LDA, with Collapsed Variational Bayes and MAP performing

best when the hyperparameters are offset by 0.5 for α and 1 for β.

It is common knowledge within the topic modeling community that the number of topics

K is typically specified a priori and is a value chosen based on the context of the data, or the

desired granularity of topics in the LDA model. Researchers have developed several methods

for stochastically choosing K mostly using Bayesian nonparametric algorithms. Griffiths and

Steyvers[69] fit several independent models using different values of K and then choose the

value of K that yields the highest log-likelihood. Heinrich[76] discusses Infinite LDA, the use
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of hierarchical Dirichlet processes (HDP) to estimate K. Finally, Griffiths and Ghahramani

use the Indian Buffet Process in [68] to estimate K for latent feature models.

2.4.2 Parameter Estimation via Collapsed Variational Inference

As mentioned previously, this manuscript will focus on the collapsed Gibbs sampling ap-

proach for estimating the LDA model parameters. This section provides a high-level expla-

nation of collapsed variational Bayes which is a variation of the original method provided in

[19].

With variational inference[56], one estimates the posterior, P (θ, φ|w, z, α, β), in this case,

with a distribution Q̂(z, θ, φ), such that Q̂ is “close” to the posterior. Collapsed Variational

Bayes, presented by Teh in [163], first marginalizes out the model parameters θ and φ, so an

appropriate choice for Q̂ is

Q̂(z, θ, φ) = Q̂(θ, φ|z)
∏
ij

Q̂ (zij|γij) (2.8)

where the terms Q̂(zij|γij) are multinomial with parameter γij. The main restriction with

the choice of Q̂ is that it must come from a family of distributions that is similar to P , but

simpler in structure. The goal in variational inference is to choose Q̂ as close to P as possible

using Kullback-Leibler divergence as the distance function

logP (w, z, θ, φ|α, β) = DKL (Q||P ) + L (Q)

where logP is the so-called evidence and L (Q) is the variational free energy. Given the

approximate posterior in (2.8), the variational free energy is computed as

L
(
Q̂(z)Q̂(θ, φ|z)

)
= EQ̂(z)Q̂(θ,φ|z) [− logP (w, z, θ, φ|α, β)]−H

(
Q̂(z)Q̂(θ, φ|z)

)
= EQ̂(z)

[
EQ̂(z) [− logP (w, z, θ, φ|α, β)]−H

(
Q̂(θ, φ|z)

)]
−H

(
Q̂(z)

)
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Then we minimize L with respect to Q̂(θ, φ|z) followed by Q̂(z) with the minimum being

achieved when Q̂(θ, φ|z) = P (w, z, θ, φ|α, β). Teh argues that

L (Q̂(z)) ≡ min
Q̂(θ,φ|z)

L (Q̂(z)Q̂(θ, φ|z))

= EQ̂(z) [− logP (w, z, θ, φ|α, β)]−H (Q̂(z)) (2.9)

Then by minimizing (2.9) with respect to γ and performing some algebra the update equation

for the variational parameters γijk can be estimated as

γijk = Q̂(zij = k)

∝ exp
(
EQ̂(zij)

[
log
(
α + n′·jk

)
+ log (β + n′i·k)− log (|V |β + n′··k)

])

Teh then computes the expectations using a Gaussian approximation. The mechanics of the

approximation are beyond the scope of this manuscript, but when taken into account yield

the following update equation for γijk

γijk ∝

(
α + EQ̂(n′·jk)

)(
β + EQ̂(n′i·k)

)
|V |β + EQ̂(n′··k)

×

exp

(
−

VarQ̂(n′·jk)

2(α + EQ̂(n′·jk))
2
−

VarQ̂(n′i·k)

2(β + EQ̂(n′i·k))
2

+
VarQ̂(n′··k)

2(|V |β + EQ̂(n′··k))
2

)

where the fragment outside of the exponentiation looks very similar to (2.7) and the fragment

inside the exponentiation is a small correction for variance. For more details on Variational

Bayes and collapsed Variational Bayes, see [19], [163], [6] and [56].

2.4.3 A Latent Dirichlet Allocation Algorithm

Now that we have discussed the estimation of the posterior probability using the collapsed

Gibbs sampler, we can discuss how to use the LDA algorithm.

As input we have a set of word vectors across the corpus, one for each document, the

hyperparameters α and β and the number of topics K. Throughout the process, we keep
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counters for the number of word occurrences in document dj that have been assigned to topic

k, n·jk, and the number of times word wij has been assigned to topic k, ni·k. For efficiency,

we also keep a counter for their sums Nwdj
– the number of word occurrences in document

dj, and n··k the total number of word occurrences assigned to topic k. The output is the

topic association for every word in every document, denoted z, and also the multinomial

parameters φ and θ.

First, we initialize all of the global counters to zero. Then, for every word occurrence in

every document, we randomly sample an initial topic and increment the appropriate coun-

ters for each selection. Then we run the actual collapsed Gibbs sampler until convergence,

recording the results of the final M iterations – those iterations that are after burn-in. For

every word occurrence in every document, we first decrement all of our counters to take the

current sampling position into account. Then, we sample a new topic for the word occur-

rence according to (2.6). Finally we increment our counters to take into account this new

sampling. We repeat this process until the parameters do not change, or the associated topic

labels become stable. Upon convergence, we output the model parameters φ and θ as well

as the topic assignments z. The full algorithm[75] is provided as Algorithm 4.

In Blei, Ng and Jordan’s original work, they compared LDA with PLSA, mixture of

unigrams and unigram model using the perplexity[113] measure on two different corpora:

TREC AP which consisted of 2,500 news articles with 37,871 unique terms, and CRAN

consisting of 1,400 technical abstracts with 7,747 unique terms. They found that LDA

consistently had significantly lower perplexity with K > 20 and all methods performed

similarly for K ≤ 20. Additionally, the perplexity measure for LDA decreased monotonically,

whereas the other methods remained more or less constant across K. In a separate analysis

in the same work, the researches showed that classification error for LDA was consistently

lower than the mixture of unigrams model and Näıve Bayes with both LDA and the mixture

of unigrams model slowly increasing in error as K → ∞ whereas Näıve Bayes remained

constant at around 0.13. The classification error for LDA varied from around 0.1 to 0.12

and for the mixture of unigrams it varied from 0.11 to 0.13.
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Algorithm 4: Latent Dirichlet Allocation via collapsed Gibbs sampling.

Data: counts ni·k, n·jk, ni··, n··k
Input : word vectors for documents w, number of topics K, model hyperparameters α, β.
Output: model parameter estimates φ, θ and document/word occurrence topic assignments z
set ni·k = n·jk = ni·· = n··k = 0;
forall documents i ∈ [1, D] do

forall word occurrences j ∈ [1, Ni] in document i do
draw topic assignment k ← zij ∼ Mult

(
1
K

)
;

//increment counters ;
ni·k++;n·jk++;ni··++;n··k++;

end

end
repeat

forall documents i ∈ [1, D] do
forall word occurrences j ∈ [1, Ni] in document i do

//Decrement counters to account for the current topic assignments. ;
ni·k--;n·jk--;ni··--;n··k--;
//sampling a topic index according to (2.6) ;

select a topic k from P
(
zij |zij ,w, α, β

)
;

//increment counters according to this new assignment ;
ni·k++;n·jk++;ni··++;n··k++;

end

end
if converged then

output φ ;
output θ ;

end

until convergence;

Several implementations of classic Latent Dirichlet Allocation exist in a variety of lan-

guages. gensim[148] is a Python package that provides an implementation of LDA and

multiple pre-processing features including the Hierarchical Dirichlet Process. Several im-

plementations of LDA exist for Java: JGibbLDA[136] a simple no-frills implementation,

MALLET[119] a fully featured NLP toolkit, and Mahout[55] a scalable machine learning

library that can interoperate with Hadoop. The authors of JGibbLDA also provide a C++

implementation called GibbsLDA++[135]. The R package topicmodels[70] provides an

interface to the original C implementation from Blei[17]. Jonathan Chang also developed

the lda[31] package for R based on Blei’s original code and has migrated it to Julia9 as

TopicModels.jl; only the Julia version is now maintained. Chang’s package also has im-

plementations for several variations of LDA discussed in this chapter as well.

9 https://github.com/slycoder/TopicModels.jl
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Latent Dirichlet Allocation has been extended and modified to cover various other use

cases. The remainder of this chapter focuses on introducing these use cases and the generative

processes associated with each of them. Natural language processing with Latent Dirichlet

Allocation is a continuously growing field, and the methods mentioned throughout the rest

of this chapter only touch the surface of what is possible.

2.5 Correlated Topic Model

Classic Latent Dirichlet Allocation models words as being generated from topics – the cor-

relation between words and a document is not strongly considered. One major limitation

with classic Latent Dirichlet Allocation is that all topics are assumed to be independent of

each other due to the reliance on the Dirichlet distribution to explain the variance among

topic proportions[15]. For example, in classic LDA, if a document is about statistics, this

gives us no other information about what other topics may be in the document. In reality,

a document containing words about machine learning is also likely to contain words about

statistics. That is, the topics “machine learning” and “statistics” are correlated and not

independent. In Blei and Lafferty’s Correlated Topic Model [21], the correlation among topic

proportions is modeled using the logistic normal distribution[4]. That is, the authors replace

the Dirichlet distribution that models the topic proportions with a logistic normal distribu-

tion which models their proportions and correlations by introducing a covariance structure.

Similar to classic LDA, θj represents the probability distribution of topics in document dj. In

CTM, we instead consider a parameterization of this multinomial distribution η = log
(
θk
θK

)
and

θ = f(η) =
exp {η}∑

k ηk

CTM uses the generative process presented in Algorithm 5.
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Algorithm 5: Generative model for CTM.

1. Sample ηj | {µ,Σ} ∼ N(µ,Σ).

2. For 1 ≤ i ≤ Nwdj
:

(a) Sample topic assignment zij |ηj ∼ Mult (f (ηj)).

(b) Sample word wij | {zij , β} ∼ Mult
(
βzij

)
.

Unfortunately, one of the aspects of classic Latent Dirichlet Allocation is missing with

the Correlated Topic Model – we lose conjugacy. In classic LDA, we can work with the

conjugacy between the multinomial and Dirichlet distributions, but by replacing the Dirichlet

distribution with the logistic normal distribution, conjugacy is no longer present[21]. For

this reason, Gibbs sampling is said to be not possible for CTM, and instead a variational

approach is preferred. However, [123] provides a Gibbs sampling algorithm that uses block

Gibbs sampling where the topic assignments z and the logistic-normal parameters β are

estimated using all other variables in the data. The graphical model for CTM is displayed

as Figure 2.3.

K

Nwdj

|D|

wij

β

zijηj

µ

Σ

Figure 2.3: Graphical model depicting Correlated Topic Model (CTM).

Blei and Lafferty[21] performed an experiment using a correlated topic model with 100

topics on 16,351 articles from Science and compared the results to classic Latent Dirich-

let Allocation. By analyzing the held-out log-likelihood, they found that both LDA and

CTM performed similarly for up to K = 30 topics. When they used more than 30 topics,

CTM outperformed LDA. Blei and Lafferty also showed that CTM required about 10% less

words to be analyzed than LDA for CTM to accurately predict the topic assignments of

the remaining words. In [123], Minmo and Wallach compared their blocked Gibbs sampler
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implementation to the standard LDA model estimated by collapsed Gibbs sampling and

found the results to be indistinguishable. One would argue that CTM should exhibit better

predictive performance than classic LDA, so these results should be taken lightly.

Few implementations for CTM exist currently. The topicmodels package[71] for R

provides an implementation using the original variational EM method presented in [21].

The R lda package[31] provides an implementation using collapsed Gibbs sampling and is a

wrapper around Blei’s original C implementation [16] ctm-c.

2.6 Relational Topic Model

In classic LDA the only connections among documents are implicitly defined by topics, but

there are many cases in which text documents are connected to each other explicitly. For

example, Facebook status updates may be linked to one another via the friend graph where

an edge between two friends denotes a possible connection in idea or interest[97]. The

relational topic model (RTM)[30] models not only the words in a set of documents, but the

explicit relationships among documents such as co-authorship[184]. Much literature exists

analyzing only the structure of networks, for example [173], but the purpose of RTM is to

augment this network structure with the content of each node in the network.

As with CTM, RTM begins with an LDA recipe by generating documents from a finite set

of topics. Then, RTM proceeds by modeling the link between a pair of documents as a binary

variable denoting whether or not there is a connection between the pair of documents. Similar

to LDA, the hyperparameters of RTM are K-distributions of terms β, and a K-dimensional

parameter α. RTM assumes a function Ψ that yields link presence probabilities based on the

topics assigned to words in every pair of documents, and assumes that words w and binary

links y are generated by the process described in Algorithm 6; the graphical model for RTM

is displayed as Figure 2.4.
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Algorithm 6: Generative model for Relational Topic Model (RTM).

1. For every document dj ,

(a) Draw the topic proportions θj |α ∼ Dir(α).

(b) For every word occurrence wij in the document:

i. Sample a topic assignment zij |θj ∼ Mult(θj).

ii. Sample a word wij |zij , β ∼ Mult(βzij ).

2. For every pair of documents dj and dj′,

(a) Sample an indicator of whether or not a link exists between d and d′: y|z·j , z·j′ ∼
Ψ(·|z·j , z·j′).

α

θj η θj′

zij yjj′ zij′

wij β wij′

Nwdj Nwd
j′

K

Figure 2.4: Graphical model depicting Relational Topic Model (RTM).

Like with CTM, the relational topic model requires variational methods to estimate the

model parameters; for information on deriving the estimates for the model parameters, see

[30]. Chang and Blei studied the use of RTM on three textual datasets: abstracts from the

Cora[156] research paper database, WebKB[156] and PNAS[165] as well as the links among

the documents in the each dataset. The authors evaluated the predictive distribution using

two different link functions Ψ – logistic and exponential, and compared the performance

to three alternatives: a baseline model where words and links are independent, a “Mixed-

Membership”[127] model which extends the mixed membership stochastic block model[3],

and finally a combination of classic LDA and logistic regression. Without surprise, RTM

performed better on held-out log-likelihood than all three alternative models on all three
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datasets. RTM performed on average 5% better than the baseline and the LDA/logistic

regression hybrid. The exponential link outperforms the logistic link for WebKD and PNAS

but is approximately equivalent for the Cora dataset. While RTM appears to be a very

powerful mechanism for modeling words and topics as well as the links among documents,

the author of this manuscript does not feel that it would perform well for social media in

general because there is an innate reliance on network theory and not solely on text.

2.7 Hierarchical Latent Dirichlet Allocation (hLDA)

Classic LDA has also been extended to fit topics from text into hierarchies and taxonomies.

LDA treats topics as a set where each topic is a distribution over words. A hierarchical

topic model treats a topic space as a tree with a root node containing all topics, and leaf

nodes containing very precise topic descriptions. Interior nodes in such a hierarchy represent

varying levels of granularity in topics[176]. As an example, one such topic hierarchy may

have an interior node that quantitatively defines general sports and several leaf descendants

representing specific sports like baseball, football and others. One of the daunting aspects

of fitting hierarchies to text is that the problem is so open-ended and there are an infinite

number of such hierarchies that can fit the data[60][67]. Hierarchical Latent Dirichlet Allo-

cation (hLDA) is proposed in [67] and forms the backbone for most of the modern literature

and research into topic modeling with hierarchies. As a generative model, a large space of

hierarchical models that fit the text data are considered. The caveat though is that such

a space of all possible hierarchies is infinite. The researchers use the Chinese Restaurant

Process to search the space of all possible hierarchies.

2.7.1 Chinese Restaurant Process

Jim Pitman and Lester Dubins coined the phrase Chinese Restaurant Process[137] in the

early eighties as a reference to the many Chinese restaurants in San Francisco, all of which

appeared (to them) to have infinite seating. The Chinese Restaurant Process attempts to

model how the restaurants seat patrons and has been used in mixture models to assist in
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determining the number of mixture components as in [177]. Imagine M patrons at a Chinese

restaurant. The first patron sits at the first table and then the mth patron chooses a table

according to the process in Algorithm 7 where γ is a parameter to be optimized and mk is

the number of patrons already sitting at table k.

Algorithm 7: Chinese Restaurant Process: Selecting a Table for mth Patron

P (choose occupied table i|existing seated customers) =
mk

γ +m− 1

P (choose next unoccupied table|existing seated customers) =
γ

γ +m− 1

Griffiths et al. state that CRP is useful for problems involving unknown numbers of

components because it places a one-to-one correspondence between tables and components

(or topics), and a one-to-many relationship between components and texts (tables and pa-

trons seated at the table). For purposes of fitting a hierarchy, the authors use an altered

formulation of CRP, the Nested Chinese Restaurant Process (nCRP), where every data point

is associated with multiple components/topics along a path in such a hierarchy. From [20],

nCRP realizes the following scenario. Suppose that there are an infinite number of infinite

seating Chinese restaurants. Designate one restaurant as the “root” restaurant. Each ta-

ble in the root restaurant contains a card on it that points to another unvisited Chinese

restaurant in the city. The tourist then goes to that restaurant, gets assigned a table (using

CRP), and that table has a card on it specifying yet another Chinese restaurant. Imagine

this process continues infinitely and each Chinese restaurant can only be visited once. One

can see that this traversal of Chinese restaurants forms a tree with infinite branching factor

and infinite depth with each node in the tree representing one restaurant. After M tourists

have participated, we have one subtree out of the infinite set of all trees. nCRP provides

a method for determining a prior on the infinite space of trees and is used as a component

of hLDA. The generative process for hLDA is presented in Algorithm 8 and illustrated as

Figure 2.5. First, each document is constructed by sampling a length L path through the

infinite tree. Then, draw an L-vector of topic proportions θ from a Dirichlet distribution

with corpus hyperparameter α. Finally, sample words for the document from the topics

associated with the nodes along the length L path.
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Algorithm 8: Generative model for Hierarchical Latent Dirichlet Allocation (hLDA)

1. Define c1 as the root restaurant.

2. For each level in the path l ∈ {2, . . . , L}.

(a) Sample a table from restaurant cl−1 using Algorithm 7 and set it as cl,

3. Draw an L-vector θl of topic proportions from Dir(α).

4. For each word occurrence i ∈ {1, . . . , Nwl
}:

(a) Draw zl ∈ {1, . . . L} from Mult(θl).

(b) Draw wil from the topic associated with restaurant czl .

Υ

T

α

wil

θl

zl η

β

∞N
M

c1

c2

c3

cL

Figure 2.5: Graphical model depicting Hierarchical LDA (hLDA).

The original incarnation of hLDA[67] developed by Griffths et al. used a Dirichlet prior on

the topic proportions θ thus allowing the use of Gibbs sampling to estimate model parameters

unlike other LDA variants such as CTM and RTM. For evaluation of finite depth hLDA on

real text, the researchers performed a qualitative and visual analysis of a three level hierarchy

generated from 1,717 NIPS abstracts from 1987-1999 with a vocabulary of 1,600 terms. A

later manuscript used hLDA abstracts from the Journal of the ACM from 1987-2004 as

a corpus to compare LDA to hLDA[20]. The researchers found that hLDA yielded a near

constant held-out log-likelihood around -20,000 for all K whereas LDA consistently exhibited
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a lower log-likelihood for all K. Their results showed that the log-likelihood increased similar

to
√
K but was always consistently lower than the log-likelihood from hLDA.

Several variations of hLDA exist for more specialized purposes. In [20], Blei, Griffiths

and Jordan do not fix the cardinality of the set of topics K that they fit to the data. Instead,

they used a stick-breaking process that imposes a reliance on the GEM distribution[137] to

sample topic proportions θ. Chang and Blei combined hLDA with their previous work on

RTM to develop a combined model that allows for fine-grained topics in a network setting;

the application used in their work was a network of communication over the United States[32]

. Researchers at Yahoo! and the University of Pennsylvania used a very similar formulation

of LDA along with Pachinko allocation[106] in [90] to disambiguate named entities using

weakly semi-supervised learning. Mao et al. describe in [115] semi-supervised hierarchical

latent Dirichlet allocation (SSHLDA) which grows a taxonomy using a small training set of

documents rather than using unlabeled data. Though researchers have used hLDA for a wide

variety of text analysis involving hierarchies of topics, Pujara and Skomoroch commented in

[141] that current techniques tend to focus on small corpora with thousands of documents

and terms and not on large web scale sources.

2.8 Supervised Variations of LDA

The generalized linear model (GLM) is one of the most widely used statistical techniques. It

allows one to model some dependent variable y as a linear combination of a set of independent

variables x with real coefficients β. Analysts use different types of GLM models depending

on the distribution and domain of the response variable y and the residuals. Typically, the

independent variables x constitute real measurements but in the case of principal components

regression, the independent variables are principal components, each containing a linear

combination of correlated variables[116]. Supervised LDA (sLDA)[117] is an extension of

classic LDA that fits topics according to the distribution of the dependent variable y. sLDA

is superficially similar to principal components regression in that clusters of words are used to

explain the distribution of the dependent variable rather than just the independent features
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themselves. sLDA, like other variants of LDA, assumes a generative process that fits words

into topics, but based on the distribution of the dependent variable. Unlike classic LDA

which only models words into topics and is unsupervised, sLDA maps a response to each

document and is thus supervised. Some examples of response variable types and use cases

are

• ordinal discrete values such as scores on an essay, or the number of stars awarded to a

restaurant in a Yelp review[109]10,

• counts such as the number of users that “Digg” a particular webpage on the popular

news sharing site digg.com[104], a classic example developed by the father of sLDA,

David Blei,

• binary indicators such as spam indication[14], or sentiment polarity[94],

• nominal topic classification.

The generative process for sLDA for every document dj is in Algorithm 9 and the graphical

model is depicted as Figure 2.6.

Algorithm 9: Generative Model for Supervised Latent Dirichlet Allocation (sLDA)

1. For each document dj sample a topic proportion vector θj |α ∼ Dir (α).

2. For each word occurrence in document dj

(a) Sample topic assignments zij |θj ∼ Mult (θj).

(b) Sample word wij |zij , β1:K ∼ Mult
(
βzij

)
.

3. Sample response variable yj |zij , η, δ ∼ GLM (z̄, η, δ).

where z̄ = 1
Nwdj

∑Nwdj

i=1 zij , η is a vector of regression coefficients and δ is some scale parameter

such as the variance σ2 for the normal distribution. GLM(·) refers to the canonical link function
for the GLM model in question.

For evaluation, the researchers studied two regression problems: predicting movie ratings

(ordinal and discrete) and predicting the number of “Diggs” a webpage submission receives

10 https://www.yelp.com/academic_dataset
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Figure 2.6: Graphical model depicting supervised LDA (sLDA).

on the Digg11 service (counts). The researchers took the logarithm of the data to force

normality so that they could use a standard linear model and avoid complicated computation

with the GLM that was beyond the scope of their work. They used R2 from a five-fold cross

validation to compare the results on both datasets using sLDA, standard linear regression

using LDA topics as the predictors, and LASSO with words as features instead of topics.

For the movie prediction problem, sLDA consistently had a higher R2 and held-out log-

likelihood regardless of number of topics. For the “Diggs” prediction problem on the other

hand, sLDA performed better than standard regression with LDA topics as predictors only

when the researchers specified a small number of topics (approximately eight or less); both

methods were comparable for larger numbers of topics. Finally, sLDA performed 8% better

and 9.4% better on R2 than LASSO for the Digg problem and the movie rating problem

respectively. Despite these positive results, Hughes[82] states that the power of supervision

decreases as the number of words per document increases. This is a very important and

timely finding as it suggests that sLDA is a good candidate classifier to use for the research

presented in the manuscript.

2.8.1 Other Supervised LDA Approaches

Researchers in natural language processing and computer vision have extended LDA in

similar ways to form other supervised and semi-supervised variations of LDA aside from

sLDA. Many of these methods are very similar to the technique presented as sLDA, but with

11 http://www.digg.com
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differences in particular nuances of the model or model assumptions. In [101], Lacoste-Julien

et al. present DiscLDA, a discriminative (rather than generative) version of Latent Dirichlet

Allocation that introduces a class-dependent linear transformation on the topic mixture

proportions θ for dimension reduction. The topic mixture proportions are transformed to a

mixture of Dirichlet distributions rather than relying on a single distribution. The other main

difference between DiscLDA and sLDA is in parameter estimation; sLDA maximizes joint

likelihood while DiscLDA maximizes conditional likelihood. Lacoste-Julien et al. compared

the document classification performance of features generated from DiscLDA using a block

matrix as the linear transformation, versus a classic LDA model with 110 topics using the

classic 20 Newsgroups12 text corpus of Usenet messages. In an experiment, the researchers

attempted to classify messages as belonging to alt.atheism or talk.religion.misc, a

reportedly difficult task since the contents of both newsgroups is very similar in vocabulary.

Using the topic proportions from DiscLDA with a binary SVM classifier, and using DiscLDA

independently both yielded an improvement in binary misclassification rate of 3% over using

the topic mixture proportions from classic (unsupervised) LDA with SVM.

According to [187], one disadvantage to DiscLDA and sLDA is that features extracted

from them must pass to another classifier for them to be useful in document classification.

In [187], Zhu et al. introduce minimum entropy discriminative LDA, or MedLDA for short.

MedLDA is a maximum-margin approach similar to SVM which uses side information and

the LDA model structure for document classification. Whereas sLDA learns a point estimate

of the set of GLM parameters η, MedLDA uses a Bayesian approach to learn a distribution

q (η) that maximizes the margin. For a better perspective, the researchers described their

method as a hybrid – a combination of a Bayesian sLDA where η is sampled from a prior

q (η), and ε-insensitive support vector regression[158]. For evaluation, the researchers trained

a 110 topic MedLDA model and a 110 topic classic LDA model on the 20 Newsgroups

dataset. They showed that qualitatively, MedLDA produced per-class distributions that

were sharper and sparser for topics that had the most discriminative power whereas LDA

overfit by discovering per-class distributions that modeled the fine details of the document

12 http://qwone.com/~jason/20Newsgroups/
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without regard to discriminative power. Quantitiatively, MedLDA was found to perform

significantly better on the binary classification (alt.atheism vs. talk.religion.misc)

task than DiscLDA, sLDA and a hybrid LDA/SVM solution. MedLDA with 80 topics or

more was also found to perform significantly better than DiscLDA, sLDA and LDA/SVM

with respect to accuracy for the multiclass problem using each of the 20 newsgroups as a

class. Finally, the researchers compared MedLDA to sLDA and LDA for regression using

the movie ratings data mentioned earlier and found that MedLDA and sLDA performed

similarly with respect to per-word likelihood and predictive R2, but consistently better than

LDA. In summary, the goal of MedLDA is to find a latent topic representation of documents

in a corpus that explain the data well, and also predict correctly with a large enough margin.

Ramage et al. presented Labeled LDA (L-LDA) in [144] which is a model for credit

attribution, or tagging text with tokens. The authors state that Labeled LDA allows for

information retrieval systems to attach tags to text, and extract snippets of text based on

these tags for use in search engines. Unlike classic LDA and DiscLDA, Labeled LDA is

appropriate for multi-label classification because it associates with each document a set of

labels as training data rather than just one. For credit attribution it is simpler to assign

labels to words in a document rather than a latent topic that may be less interpretable. For

evaluation, the researchers took a sample of 29 web pages saved to the social bookmarking

site del.icio.us, each containing two or more tags from a predefined set and compared the

tags extracted by L-LDA to the results from a series of one-vs-rest SVMs. Human raters

found that the tags generated by L-LDA were “superior” about 48% of the time and 14%

of the time for the series of SVM classifiers. The authors found that L-LDA outperformed

the SVM method for multi-label classification of web pages using macro-average F1 and

micro-average F1 as evaluation metrics.

Several other variations of sLDA have been proposed, all with more specific use cases

than the variations previously discussed. Multilingual Supervised LDA (MLSLDA)[25] uses

sLDA for classification and regression across languages essentially simulating transfer learn-

ing among corpora. sLDA-bin[142] is another variation developed for classification in a

multivariate binomial context for document and image labeling and annotation. Spatial
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LDA (SLDA)[171] adapts classic LDA to a computer vision context by treating groups of

pixels (such as a nose and an eye) as a “visual word” in an image (document) where the

word-document pairs are an unobserved variable rather than observed as in classic LDA.

Hierarchically Supervised LDA (HSLDA)[133] constructs a model using data partially cate-

gorized into a hierarchy as well as annotations provided by humans and can be used to classify

documents into categories of a hierarchy together with tags. Feature LDA (feaLDA)[108]

allows for specification of other types of supervision such as using both document labels and

labeled features whereas Labeled LDA can only model the relationship between class labels

and documents.

2.9 Chapter Summary

This chapter provided a history of the topic modeling literature from basic principles starting

with Näıve Bayes through the early vector space model with Latent Semantic Analysis and

PLSA, an early Bayesian model for text modeling. Then we saw a thorough coverage of

Latent Dirichlet Allocation (LDA) including a derivation of the collapsed Gibbs sampler for

parameter estimation, discussion of estimating hyperparameters and the number of topics

while maintaining consistent notation. The rest of the chapter discussed variations of Latent

Dirichlet Allocation to handle special, but common use cases: correlation in topic sets, linked

documents, topic hierarchies and supervised learning. This discussion exposes the continued

importance of topic modeling in the new frontier of statistical natural language processing

and motivates the need for the individual contributions discussed later in this manuscript.
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CHAPTER 3

Methods for Data Augmentation in Machine Learning

and on Short Texts

In this chapter we review previous work in the literature related to machine learning and

related tasks with short texts as well as the more general theory of data augmentation. While

there has been a wealth of literature dedicated to machine learning tasks on text, short texts

have not received nearly as much attention. The first widespread discussion of tasks with

short texts appears in vintage literature dating back to the 1980s particularly for information

retrieval and searching databases with short user generated queries. Much more recently, the

discussion has reemerged in the literature related to Web content and other user-generated

content. In much of the contemporary literature, the most popular machine learning tasks

applied to short texts seems to be language identification, search and sentiment analysis.

While the author of this manuscript refers to the process of making a short text longer as

text augmentation, the literature, particularly the vintage literature, refers to this method

as query expansion and both phrases are used interchangeably in this chapter.

Recently, much investigation has been performed on a wider problem: data augmentation,

where more data is generated to reduce the effects of sparsity and improve generalization

error[180]. The majority of the literature involving data augmentation discusses applications

to image processing, computer vision, video and audio. These applications generally use

neural networks and deep learning. The novel research discussed in this manuscript combines

methods from query expansion and data augmentation, so in this chapter we review both.
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3.1 Query Expansion

Query expansion is essentially a niche form of data augmentation where short texts are

simply augmented with other semantic units such as words, phrases or concepts. Prior work

on this problem can be categorized as follows: relevance feedback, domain specific, and

lexical analysis.

3.1.1 Relevance Feedback

In a relevance feedback system, a user issues a short text as-is and the system returns the

best ranked results to the user. Through various algorithms, the query system then adds

words from these results to augment the original short text query. A major problem arises

with this method when the returned results are not relevant to the original search query.

Some of the vintage systems also used manual user feedback for expansion.

In [179], Xu and Croft proposed using both relationships among words as well as analyzing

how well the returned documents match the original text in a concept space. The researchers

refer to this method as global and local document analysis and it is the only work that

uses a separate step to measure semantic cohesiveness in candidate query terms. Global

document analysis referred to studying word relationships across the entire corpus whereas

local document analysis only studied the set of results returned as part of the results for

the initial query. They found that local analysis was more effective than global analysis in

document retrieval applications. Local document analysis also included a check for semantic

cohesiveness. Given these results, the author of this manuscript believes that semantic

cohesiveness is an important factor to include in a method for augmenting short texts. Mitra

et. al. study the problem of concept drift in [126]. Concept drift occurs when the intent of

the original query is modified by irrelevant results from the initial issuing of the query. The

researchers used several boolean logic methods as well as distance functions to measure the

true cohesiveness of returned results to the original query and found their method superior

to the baseline.
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The vintage method has also appeared in contemporary work as in Chum et. al. [37] as

a way to expand queries for image retrieval. In their work, a region of an image is submitted

to a search system and it returns a set of image regions that match the query and all of

the returned results are combined into one pseudo-image from which a latent concept can

be discerned. The query is then reissued using the new learned concepts. The researchers

accomplished a 23% improvement in retrieval performance, from 55% to 78% using their

proposed method.

3.1.2 Domain Specific

In a domain specific approach, the researchers either manually constructed a thesaurus

of synonyms, or used automated methods based on co-occurrence or semantic networks.

This contemporary method was implemented as an automatic thesaurus using external data

sources used as a corpus, or the full experimental corpus of text itself. The most com-

monly used external datasets used for augmenting short texts are Wikipedia and WordNet.

Wikipedia13 is a collaborative and free encyclopedia14. Since Wikipedia is updated very

frequently by editors and other users, it has wide coverage and recency[181]. Additionally,

the self-organizing nature of Wikipedia editors with domain expertise seems to have cre-

ated a high-quality resource. The main incentive for using Wikipedia is in its structure

and organization[181]. WordNet15 is a lexical system manually developed by George Miller

at Princeton University[122], and resembles a thesaurus. Words are grouped together into

synsets based on their meanings and related to other words based on their senses, the context

in which the word is used in language. WordNet also relates words based on is-a and has-a

relationships.

In [53], the researchers augmented their short text data with concepts from Wikipedia

articles to automatically annotate and tag text with topics. While classification was not of

13 http://www.wikipedia.org

14 https://en.wikipedia.org/wiki/Wikipedia:Introduction

15 http://wordnet.princeton.edu
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primary interest, it was implied that the concepts discovered by their TagMe system could be

used to augment short texts. Using such external data resulted in a decent F-measure of 0.78

for topic identification and annotation. In similar work [9], Banerjee and colleagues used a

hybrid of external data from Wikipedia and the legacy relevance feedback approach to cluster

short texts. By issuing the short text as a query to Wikipedia, the researchers augmented

the short text using titles from the returned articles. The hybrid approach accomplished an

approximate 8% improvement in clustering accuracy over the baseline approaches on raw

short texts and clustering algorithms available in CLUTO. A very similar method discussed

in [81] used full Wikipedia articles and the entities contained within them, rather than just

titles to augment short texts.

The method presented in [167] by Voorhees augmented search queries using a straightfor-

ward thesaurus approach induced by the WordNet semantic network as well as a similarity

metric. In [128], Naigli et. al. made an attempt to expand on a similar method by us-

ing WordNet semantic networks to identify other words in the same sense rather than just

using synonyms. They found that their method performed an average of 2% better when

augmenting with synsets, hyperonyms and gloss hyperonyms16 and about 27% better when

augmenting with gloss words. It was unclear if this result was statistically significant and

the researchers admit that they prefer to repeat their experiments on much larger corpora

of short texts.

Mandala et. al. [112] presented an ensemble approach that combined the results of mul-

tiple thesauri. Each thesaurus was from a different paradigm: hand-crafted, co-occurrence

based, and head-modifier based. In the hand-crafted approach, a domain expert constructs

a thesaurus (i.e. WordNet) by hand. The co-occurrence based thesaurus used the number

of times two terms appeared together in the corpus. The head-modifier based thesaurus was

the most exotic and considered two terms similar if they appeared in the same linguistic

construct, such as subject-verb, verb-object etc. Unsurprisingly, the researchers found that

a combination of the co-occurrence based thesaurus and the head-modifier based thesaurus

16 A hyperonym is a word that refers to a group of similar items – the a part of the is-a relationship. For
example, vegetable is a hyperonym. A gloss is a very short definition of a term or group of terms.
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performed the best. In [143], Qiu et. al. proposed a method for automatic query expansion

by using statistical term co-ocurrence data and was the only research in this review that

tested the effect of the number of terms to use to augment the text. The researchers found

that the method performed best when a small number of terms was added relative to the

maximum used in the experiment.

Cui et. al. [38] discussed a method that used query logs as the external dataset. Un-

like the previously discussed methods in this section, this method uses “apples-to-apples”

comparable data – online queries containing short text is augmented using logs of previously

executed queries. The method discussed is self-sufficient with respect to data, similar to the

approach that we will discuss in this manuscript in Chapter 4. A related way of resolving

the sparsity induced by short texts is to combine multiple short texts into one large text, as

presented in [175]. The task of interest to the researchers was to identify influential Twitter

users given a particular topic. Similarly, [80] used the same method for training LDA models

to identify topics in tweets. Rather than combine a user’s tweets into one document, Hong

and Davison instead combine all tweets containing the same word into a single large docu-

ment. The researchers found that models trained from the larger text performed better than

the models trained on the individual tweets. In both cases, the researchers made the assump-

tion that all of a particular set of tweets was related to the same latent topic, but Twitter

users tweet about many different topics. For this reason, the author of this manuscript con-

siders combining short texts as a form of using external data. This is a very commonly used

“workaround” in dealing with short texts in industry. Jin et. al. [87] proposed a solution to

the potential mismatch in data by developing a variation of LDA called Dual LDA that uses

transfer learning to learn a set of concepts on larger auxiliary texts and apply them back to

the short texts. While Jin’s method is much more dynamic than the others mentioned in

this paragraph, it still relies on the existence of a large corpus of external data.

The author of this manuscript feels that although large corpora are easy to find on

the World Wide Web, they may be too domain specific as the external data used to build

a thesaurus must be applicable to the text being augmented. The use of Wikipedia and

WordNet seems to imply that performance is best on scholarly or non-fiction texts rather
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than colloquial language typically used on the Web, on social media platforms and other

services that produce short texts. Combining short documents into a larger one is also

problematic because it assumes that the short texts are dimension (time, space, author,

etc.) invariant, and in the types of systems that produce such short texts, this is rarely true.

3.1.3 Lexical Analysis

Other methods use feature selection and generation techniques from machine learning and

text mining to extract meaning or other features to accomplish a task. Some of these methods

include modifying topic models, using groups of words and characters as features instead of

single words, and graph-based methods.

In [84], Islam and Inkpen note that most methods for short texts rely on domain knowl-

edge. The researchers used Latent Semantic Analysis (LSA) and Pointwise Mutual Informa-

tion (PMI) to identify similar texts. One unique aspect of their work is that they also used

string similarity, particularly longest common subsequence, to correct for spelling errors in

queries. The researchers compared their proposed similarity metric to human judgment and

achieved a Pearson correlation of 0.853.

Gottron et. al. [66] researched language identification on short texts using classical

machine learning techniques with little or no modification. The researchers used n-grams

where n varied from 1 to 5. They found that Naive Bayes performed the best on this task

for all n across the board. In Tromp and Pechenizkiy [164], the researchers constructed

a network of character and word n-grams from short texts to construct a grammar for a

language. The machine learning task was also language identification. They found that

their method yielded a statistically significant improvement on classification accuracy and

that it was particularly effective for jargon.

The fact that typical machine learning methods do not work well with short texts is

unfortunately taken for granted in the literature as common sense. Yan et. al. [180] provided

a discussion of machine learning on short texts and why it is problematic including term

sparsity, and the lack of discriminative terms. The researchers proposed a modified version
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of LDA called the Biterm Topic Model (BTM). The major difference between LDA and

BTM is that pairs of words at any location of a text, rather than a single word, are sampled

from a multinomial distribution. Their results showed that purity increased logarithmically

as the word distance between the terms in the pair increased, and was consistently better

than LDA at non-negligible distances. Another method based on bigrams is presented in

[51], instead using bigrams of syntactic labels such as parts of speech. When using these

lexical features, the researchers accomplished an 86% accuracy score over 76% when using

all feature types.

Dos Santos and Gatti proposed a method using deep convolutional neural networks for the

sentiment analysis task (classification) on short texts in [46]. Their method uses word-level

embeddings and character-level embeddings to capture syntactic and semantic information

and morphological and shape information respectively. The character-level embeddings al-

lowed the researchers to extract meaning from small tokens such as hashtags. Their work

accomplished 85.7% accuracy in positive/negative sentiment classification compared with an

average of 82% using standard methods presented in [159].

The author of this manuscript believes that the methods presented in this section serve as

the most promising methods for general natural language processing tasks moving forward as

they are scalable and represent language in a more holistic sense than the methods proposed

in sections 3.1.1 and 3.1.2. One aspect of the research in this section with which the author

disagrees is in the use of n-grams – the research in this section focused on using bigrams (or

biterms) which seems arbitrary since n can essentially be any integer, and the author feels

that researchers have not sufficiently defended why n = 2 was the best choice.

3.2 Data Augmentation

Recent data augmentation literature discusses making perturbations to the data points them-

selves to generate new data points, and thus an augmented dataset. The most common ap-

plications of data augmentation occur in vision and audio rather than in text, but introduces

very interesting ideas that can also be applied to text. Another school of data augmentation
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methods can be found in the Bayesian modeling and MCMC literature[44][166][58][140][139],

but will not be discussed in this manuscript as its purpose does not align with this research.

One of the most frequently cited manuscripts in the area of data augmentation is from

Krizhevsky et. al. [99] on classifying images into one-thousand classes. One concern dis-

cussed in the paper is the possibility of overfitting. The researchers used a neural network

architecture that required 60 million parameters. Data augmentation was used as one method

to combat overfitting. From each 256×256 image, all patches of size 224×224 were extracted

and used to augment the training data associated with the original image. When an image

is classified, the 224× 224 patches in the four corners of the image, the center of the image,

as well as their horizontal transformations are all classified and their labels averaged. The

researchers note that without this form of data augmentation, their neural network overfits

and they would have had to use a smaller network architecture instead. The second form of

data augmentation they used transformed the intensities of the RGB channels of the images

in the training data. They used a transformation based on PCA to create more training

instances from each existing training image. The researchers achieved significant reductions

in testing error over existing methods on several datasets.

Simard, Steinkraus and Platt [157] included data augmentation as one of the their recom-

mended best practices when working with convolutional neural networks applied to document

analysis. They described a method of growing a training set so that it is very large. They

proposed adding distorted versions of the original data into the training data to augment

the training set. These distortions included both affine transformations such as translations,

rotations and skewing as well as elastic transformations that they define as a convolution of

Gaussian noise and random displacement fields. Using this extended dataset, the researchers

trained a convolution neural network (CNN) and achieved improved classification error. Us-

ing no distortion with a two-layer Multi-Layer Perceptron achieved 1.6% classification error

whereas using a simple convolutional neural network with affine and elastic transformations

yielded lower classification errors of 0.6% and 0.4% respectively. This method would be

approximately equivalent to adding synonyms, antonyms and other functions of words to a

bag-of-words representation.
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In [74], Haubert et. al. expand on the ideas presented in [157] by exploring the pos-

sibility of learning the transformations used for data augmentation rather than manually

specifying them. The researchers proposed using label-invariant transformations – transfor-

mations performed on an image that do not change the label or class of the image. First,

an unsupervised method was used to learn the different transformations that appear in each

class. New data is then generated by sampling an image and then sampling a transformation

from the distribution of transformations learned by the unsupervised method. By applying

this transformation to the randomly selected image, we get a new data point. The process

repeats until the training data is of a reasonable size. The researchers used the famous

MNIST17 dataset for their experiments and compared their results with the InfiMNIST18

dataset which the researchers cited as the most extensive use of data augmentation in the

literature. The proposed method achieved a test error of 0.44% on a convolutional neural

network whereas the InfiMNIST dataset yielded a testing error of 0.49%.

Dosovitskiy et. al. used data augmentation to learn features in an unsupervised manner

by building on the work of [157] and [74] in [47]. The researchers discuss the fact that feature

learning usually involves labeled data and then learning proceeds in a supervised manner.

The proposed method does not use labels or supervised learning on the surface. Instead,

researchers take a single patch from each image and place it in its own class, yi. Then a series

of transformations are performed to obtain more patches based on the original one, and these

transformed patches are also placed into the same class yi. The researchers then trained a

convolutional neural network to classify the surrogate classes. More specifically, all possible

32× 32 patches of an image are extracted and one-hundred transformations were applied to

each patch. Each transformation came from a base set: translation, scale, color and contrast.

Researchers used several datasets and classifiers with their data augmentation method and

found that on one dataset, accuracy using their proposed method was the best. The novel

research described later in this manuscript also uses a number of iterations to ensure that

each set of augmented documents produces each perspective of the original document.

17 http://yann.lecun.com/exdb/mnist/

18 http://leon.bottou.org/projects/infimnist
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Bouthillier et. al. describe dropout as a method for data augmentation in [24]. The re-

searchers argue that dropout permits data augmentation without any other domain expertise

and that because it uses a bagging step to combine several networks with shared parame-

ters, it yields better generalization error. They also developed an extension of dropout that

increases variation in the sample by injecting random noise. The researchers state that in

order to get better generalization error, a classifier must not only be able to classify the

images in the dataset, but also all images that come from the same data distribution. Tests

on MNIST and CIFAR-10[98] showed that the researchers’ method using dropout on input

noise yielded the best accuracy at 1.12% on MNIST and 40.9% on CIFAR-10. The next best

method, performing dropout on both input noise and hidden layer noise yielded accuracies

of 0.95% and 39% respectively. Baseline noise projection performed the worst at 0.99% and

37.9% respectively. While the researchers focused on data augmentation, the author of this

manuscript feels that dropout is more of an ensemble method than a data augmentation

method and that the ensemble is actually what contributed to better results.

Researchers have also used data augmentation for acoustic modeling. Jaitly and Hin-

ton applied data augmentation to a speech recognition problem in [85]. In their work,

the researchers transformed spectograms by applying a random and linear warping in the

frequency domain of the audio. To generate variations of training data, the researchers

added speaker-to-speaker variations to each input using Vocal Tract Normalization. The

spectrogram’s frequency axis is warped using a warp factor α. During the training phase,

utterances from speakers are warped using random values of α, a process they refer to as

Vocal Tract Length Perturbation (VLTP). The researchers made an improvement over the

baseline of about 0.65% on the test set for TIMIT and a gain of about 1% using a baseline

CNN. This paper was the only paper that explicitly discussed that data augmentation is

useful for small datasets. Cui et. al. built on Jaitly and Hinton’s work in [39] where they

combined VLTP with stochastic feature mapping (SFM). The researchers explain that SFM

basically is a form of voice conversion, though a statistical one. For a set of features H, and a

speaker S who speaks an utterance u with label W , one would observe a sequence of features

O(S) = {o(S)
1 , . . . , o

(S)
N }, o

(S)
t ∈ H. Then, given we have speaker T speak the same utterance u
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with the same label W , we infer the sequence of features as O(T ) = {o(T )
1 , . . . , o

(T )
N }, o

(T )
t ∈ H.

The goal of SFM is to infer this mapping between feature sets O(S) and O(T ). Once this

mapping is learned, it can be used to generate new data by mapping the existing data to

other speakers. By combining VLTP and SFM, the researchers improved the maximum term-

weighted value (MTWV) on an Assamese and Haitian Creole dataset. Combining VLTP and

SFM on the Assamese data yielded an MTWV of 0.2862 and for Haitian Creole yielded an

MTWV of 0.5178. Both of these values were higher than those for SFM and VTLP inde-

pendently applied before training a deep neural network (DNN) and a convolutional neural

network (CNN), and also higher than the baseline applied to a DNN and CNN.

Data augmentation has been applied in a wide variety of fields and for solving a wide

variety of machine learning challenges. Ahmed et. al. [2] used data augmentation as a way

to deal with class imbalance for a person re-identification problem. Li et. al. [107] also

attempted to solve a person re-identification problem but used data augmentation alongside

dropout and the bootstrap. Finally, Zeiler and Fergus [183] described the use of data aug-

mentation with stochastic pooling for regularization of deep convolutional neural networks.

Data augmentation is a method parallel to query expansion, but relies more on statistical

and machine learning theory. One can say that data augmentation is sometimes similar to

ensemble method and this is especially true for dropout. Data augmentation is also similar

to the parametric bootstrap in the case of adding noise to improve generalization error[72].

For short texts in particular, the author of this manuscript believes that combining vintage

query expansion with data augmentation will yield better results than applying a classifier

on unaltered short texts.

3.3 Chapter Summary

In this chapter we reviewed literature on a variety of machine learning tasks applied to short

texts and their proposed solutions, as well as data augmentation methods used in other

fields.
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The researcher categorized the short text methods as relevance feedback, domain specific

and lexical analysis. The vintage literature mostly considered the so-called query expansion

problem by issuing an initial query and using human or automatic intervention to improve

the short query. The solutions requiring a thesaurus such as WordNet assumed that writing

style was consistent with typical English grammar norms and the method is based on a

manually developed system. The methods involving external knowledge either used large

datasets such as Wikipedia, or relied on combining documents under the assumption that

all documents had the same semantic characteristics. The machine learning based methods

typically use a single dataset along with feature generation, but the researchers seem to

make arbitrary decisions regarding the generated features. The researcher believes that

the machine learning based, and variations of the domain-specific approach are the most

promising within the set of explicitly short text methods, and are also the most relevant to

today’s usage of language. The problem with using external datasets such as Wikipedia is

that it makes the assumption that short texts are scholarly or can be classified into one of

the topics discussed in Wikipedia. More broadly, it makes the assumption that the ontology

and writing style is similar between the external dataset and the corpus. Mundane colloquial

topics that carry little semantic discrimination power are unlikely to be found in Wikipedia

and similar corpora. Additionally, combining multiple short texts into one larger text makes

the assumption that all of the texts are produced from the same latent topics, and this is

a very risky proposition when user-generated content with a dimensional component is the

target.

We also discussed data augmentation where individual data points are perturbed or

transformed to create new data points that can be added back to a training set. The result

of data augmentation methods is not only a larger training set, but also more generaliz-

able classifiers. In the image processing and computer vision literature, the most common

transformations include rotation, reflection, translation and skewing though there are many

more that may also transform color and other aspects of images. Researchers have even

found ways to learn which transformations to use for data augmentation within a particular

class. The common method of dropout in neural networks also forms a type of distortion
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by randomly turning off certain neurons in hidden layers and combining the results from

such modifications into essentially an ensemble. Data augmentation has also been used with

audio by perturbing spectrograms to produce new data for machine learning tasks such as

speaker identification. The proposed data augmentation method shows similarities to these

existing methods, but uses semantic relatedness to augment short texts. In particular, the

idea of sampling an image, sampling a transformation, and repeating the process a large

number of times, as presented in [74], is very relevant to the data augmentation method

proposed in this manuscript.
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CHAPTER 4

Data Augmentation for Short Texts

In this chapter we discuss a novel method to augment short texts for performing classification

by modifying the concept of bootstrapping from classical statistics with a resampling step

based on a semantic space. The proposed method attempts to derive additional meaning

and classification signal based on a “population” created from a semantic space.

4.1 Review of the Bootstrap

In statistics, the classical application of the bootstrap is for computing the sampling dis-

tribution of an estimator[48]. The sampling distribution is constructed by sampling a large

number of observations from some population independently, with replacement, and then

computing some statistic on each such sample. This process is repeated until a sufficient

number of samples of sufficient size has been selected. The resulting measurements form the

sampling distribution of the estimator from which various metrics, such as standard error,

can be computed. One use case of bootstrapping involves its use for small samples. By

treating a small sample as a population and applying the bootstrap, one can better model

the uncertainty present in the small sample[54][77]. Unfortunately, the word “small” in this

context is vague and there is little guidance as to how small is too small for the bootstrap

to perform effectively. One researcher mentions a sample size of eight as being sufficient[35].

A useful property of the bootstrap is that it takes advantage of the Central Limit Theorem

– the sampling distribution of any estimator under these circumstances is Gaussian even if

the population distribution may be anything else[52], or may even be so complex as to be

intractable[121]. As an example, common measurements in natural language processing are
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word counts and TF-IDF scores, both of which typically follow power laws[95]. The use of

the bootstrap on small samples raised interest with the researcher and inspired the question

of whether or not resampling terms from a population could generate larger samples of text

with properties that improve text classification.

4.2 Application to Short Texts: Three Modifications to the

Bootstrap

In the bootstrap, we draw samples from a dataset D with replacement, independently. By

sampling with replacement, we can construct a large number of new bootstrap samples all

which contain an appropriate number of observations. We then compute some statistic on

each of these samples and by the Central Limit Theorem, we see that the statistic has

a normal distribution as long as some additional conditions are met. In this research, the

computation of statistics and the use of the Central Limit Theorem is not of primary interest;

rather, it is solely the sampling step that is of primary interest. This serves as the first

modification of the original bootstrap framework. We note that while the observations in

D may be independent, they all likely come from the same distribution in the most basic

case of a simple dataset. One can think of a simple dataset as a nesting: observations in a

dataset.

Things get much more complicated when the dataset D is a set of texts where each text

is a bag-of-words[114] representation. As we have discussed earlier, such a dataset is called a

corpus, and each entry in the corpus is an individual document19 and each document consists

of a set of terms. The nesting in this case is terms in documents in the dataset/corpus. One

challenge applying the bootstrap to text is how we define an observation. When we speak

of sampling observations, it becomes difficult to determine if an observation refers to a

document, or a term. Even worse, the texts in a large corpus, even a simple one, typically

do not come from the same distribution. Fortunately, this context allows us to make the

19 In this manuscript, the word document is sometimes used interchangeably with the phrase (short) text
and bag-of-words.
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decision much easier since only one makes sense for text.

First, let us assume that a document is an observation, and we have the situation pictured

in Figure 4.1, where we essentially sample documents with replacement from the corpus. All

this does is make copies of existing texts and does not help classify each text into a category.

A corpus typically contains a large number of documents, so it does not make sense to

apply the bootstrap for this purpose using documents as observations anyway. Our second

modification is that we instead consider each term an observation within a document, and a

document serves as the original definition of a dataset. All documents are part of the same

corpus. For this reason, the corpus itself is really of no consequence, it is simply a collection

of texts. While we work with the corpus extensively in this research, the corpus itself does

not serve any interesting purpose aside from serving as a denominator or summation index

in many calculations. In the bootstrap framework, we treat the dataset as part of the

population used for resampling. In this context, we would simply make duplicates of words

already in the text at random and with replacement, a situation illustrated in Figure 4.2. But

it is important to recognize that words induce context – certain words are more important

than others[145] and the researcher hypothesizes that simply adding duplicate words to a

text would not yield better results than with the original text. Instead, we make one final

modification. We use a semantic space S as the population rather than the document itself.

Using this semantic space, we add words to document d that are believed to be semantically

similar to the words already in d. The new document is referred to as an augmented bag-of-

words and is denoted d∗. For the rest of this work, since there are multiple documents and

multiple possible augmented documents, we denote documents using the subscripts m and

n, and we add another subscript l to the augmented documents to denote that each iteration

of the process generates a different augmented bag-of-words. An example of this proposed

resampling step is presented as Figure 4.3. This modification is the most significant one and

serves as the bulk of this research. Throughout the rest of this chapter, we answer several

questions. What is the semantic space S? How do we sample words from it? How do we

account for the disproportional importance of certain words in the text over others? How

many terms should be sampled? How do we ensure that words sampled from S make sense?
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Finally, there are cases where the bootstrap is not appropriate because the sample size is

simply too small. This could be a problem for short texts, but the researcher believes that

if we resample in an intelligent manner, the size of the original text may not matter.

Figure 4.1: An example of the bootstrap sampling step treating the corpus as a population
and the documents as the sampling units.

Figure 4.2: A hypothetical example of the bootstrap treating each document as a population
and the terms within the documents as the sampling units.

4.3 Implementing the Proposed Data Augmentation Procedure

The proposed data augmentation method augments short texts using semantically similar

words sampled from a semantic space S. Each iteration l of augmentation produces a full

corpus D∗l where each augmented document d∗ml contains the same terms from corpus-to-

corpus, but also contains additional terms that are semantically similar to those in the

original document.
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Figure 4.3: An illustration of the proposed data augmentation method, showing the semantic
space S, the population from which terms are sampled as well as an example of a corpus D∗

of augmented texts.

The data augmentation procedure is implemented as follows. We have some topic clas-

sification model we wish to apply to a sample of short text. We denote this short text as

document dm which is a bag-of-words representation. Instead, we augment the short text

with related terms from a semantic space S formed using a matrix factorization that can

model terms and documents and retain their relationship using some distance function. It

is hypothesized by the researcher that a good class of such topic models involve matrix

factorizations, such as Latent Semantic Analysis[43][102] which will be investigated in this

manuscript. This augmented bag-of-words can then be be used to cluster or classify a test

document.

More formally, we construct a term-document matrix X from training data where the

entries Xim denote some quantity that represents the importance of term tim to document

dm such as word presence/absence, word count, or in the case of this research, TF-IDF

score. The matrix X is very sparse – only 0.04% of the values in the matrix are non-zero.

This matrix X is decomposed using a matrix factorization that preserves distance between

terms and between documents, in this case singular value decomposition (SVD) and Latent

Semantic Analysis (LSA). Such a factorization constructs a set of spaces S for both terms
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(St) and documents (Sd) such that S = {St,Sd} where distances can be computed and

compared. For each document dm in the corpus, we need to pick one or more terms to add

to dm. We first pick a target term that we will condition on in order to sample a new term to

include in an augmented bag-of-words. This target term is simply some tim in the document

and is selected according to how discriminative the term is in the document according to

TF-DF as in Equation 4.1:

P (tim|dm, X·m) =
Xim∑
qXqm

(4.1)

We then select a parallel document d′m according to how similar it is to dm. Using this

pair of dm and d′m we pick a term t′im from d′m according to how similar it is to target tim.

Finally t′im is accepted into the augmented bag-of-words representation d∗ml = dm∪t′im with a

probability proportional to how much the semantic meaning of dm changes with the addition

of t′im to it. This process is repeated until the augmented bag-of-words d∗ml reaches a sufficient

length. The relative increase in document length is denoted ε. For example, ε = 1 means

the augmented bag-of-words d∗ml is twice the length of the original document dm – a 100%

increase in length. Figure 4.4 displays the data augmentation preprocessing workflow. A

more concise and formal treatment of this data augmentation algorithm appears in the next

chapter. In this chapter, the implementation details of the proposed method are established

as well as the construction of the semantic spaces S, the selection of the classifiers and their

hyperparameters.

Figure 4.4: The generation of a new corpus D∗l containing new documents represented as
augmented bag-of-words representations.

Note that all of the conditional dependencies mentioned in the recipe above are a viola-

tion of the original independence assumption made by the statistical bootstrap[48] because
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text has complex dependencies and words are not sampled independently of each other;

rather, terms and documents are sampled dependent on their similarity to other terms and

documents. On the other hand, such dependencies also violate the independence assumption

of the Näıve Bayes classifier, but in practice the classifier stills work very well for text[146].

It is the researcher’s belief that despite these violations, this algorithm is the closest process

to the statistical bootstrap that can be realized for text in practice.

4.4 Data

The World Wide Web is full of short texts. Tweets are a very popular source of short

text, but their use requires traversing a deep “rabbit hole” of poor grammar, fake words,

misspellings, SMS abbreviations etc. such that it is not possible to reasonably extract a

coherent signal when using them for these experiments. Instead, titles of blog posts were

used for the experiments in this research. Blog post titles tend to be in a more standardized

format – concise, with a syntactic structure that entices the user to read more, but are also

often too short for proper classification.

Technorati20 is both a search engine for blogs and a directory of popular English blogs

in a set of categories. Requiring the blogs to be in English removes a layer of preprocessing

required to filter out foreign languages. While some foreign words still are present, they tend

to be eliminated by preprocessing steps common in text mining. A small scale crawl was

performed on the Technorati website in 2014. The crawl downloaded the first twenty pages

of blog URLs in each of the nine Technorati categories, as well as an additional category

which was essentially a “catch-all others” category called overall. Then, another crawler

visited each of the URLs and attempted to automatically discover the URL of the RSS feed

using the RSS specification21. For sites where the developer chose not to implement the

RSS standard regarding auto-discovery, common URL patterns were added to the domain

name to attempt to locate the feed URL. This process was not lossless; some blogs listed

20 http://www.technorati.org

21 http://www.rssboard.org/rss-autodiscovery
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Category % of Titles
autos 2.1
business 7.4
entertainment 20.8
green 2.1
living 21.6
politics 7.5
science 3.0
sports 14.3
technology 18.8
overall 2.4

Table 4.1: The ten categories used by Technorati and their relative frequencies in the corpus.

on Technorati no longer exist, some blogs had non-standard RSS feed URLs that could not

be retrieved, and others could not be retrieved due to access restrictions or server issues.

The data included 245,146 blog post titles each in one of Technorati’s categories most of

which are further subdivided into more refined categories. For a typical non-hierarchical

topic model such as we have here, only the top level categories were used.

Several preprocessing steps were performed on the resulting text: numbers and punctu-

ation marks were both removed from all text and text was converted to lowercase. Next,

stopwords – words that appear frequently in the English language for syntax but do not

convey any semantic meaning – were removed using the stopword database provided with

the NLTK library[13] for Python. According to [114], words that appear too seldom and

words that appear too often in a context should be removed as they introduce noise into

any text mining activity. First, words that appear seldom are usually misspellings, or words

that are too specialized to the particular document such that they are not representative

of the corpus and would possibly cause overfitting. Second, words that appear in a large

proportion of the documents in the corpus essentially serve as stopwords for a particular

domain above and beyond the standard set of English stopwords[153]. For example, in this

corpus the word “blog” appears across a large proportion of the corpus because the text

consists of blog post titles. The word “blog” does not induce any meaning on the title text

and thus should be removed. The choice of cutoff for words that appear too seldom or too

frequently is often arbitrary but is performed empirically in this research.
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Figure 4.5 shows the histogram of word counts and their frequencies. For example, x = 1,

y = 53650 means that there are 53,650 unique words in the corpus that appear only once

– approximately 57% of the entire vocabulary. From this histogram, it seems that a word

count of 10 is a good cutoff and reduces the vocabulary from 94,071 words to 10,889 . The

rationale behind this cutoff is that it preserves the long right tail of these word counts –

words that appear less than 10 times are likely to be very specific to a particular blog or

words that can be distractions such as misspellings and obscure slang. It also helps that

10 is a nice round number satisfying these conditions.

Figure 4.5: Distribution of word counts and their frequencies on a logarithmic scale.

Figure 4.6 is a similar histogram but this time displays the normalized inverse document

frequency (the percent of documents in which the term is found), and the number of unique

terms at each percentage. Any word that appears in more than 1% of the documents in

the corpus was removed. The words “blog” and “official” occur in approximately 4% of all

the documents in the corpus making them the most frequently used words in terms of IDF

score. Table 4.2 displays the 18 words and tokens that appeared in more than 1% of the
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web best blog center cloud day

free hosting knowledge new official one

rackspace review <<monthname>> top video week

Table 4.2: Words and tokens that appear in more than 1% of the corpus and serve as
contextual stopwords.

documents in the corpus lending support to the idea that certain words essentially serve as

stopwords in this blog corpus.

Figure 4.6: Distribution of normalized IDF scores vs. number of terms at each IDF score.

After removing stopwords and words that appear too infrequently or too frequently,

there were many documents that either contained zero terms, or became duplicates and

these documents were removed from the corpus. There were a few documents that seemed

to result from text processing errors and had an unrealistic number of terms – one document

had about 2,500 terms which is not realistic for a blog post title. These unrealistically

long documents were removed from the corpus as well. The final corpus size used for this

research contained 131,519 documents. Figure 4.7 shows the distribution of the lengths of

63



the documents in the corpus on a log scale. One can see that the document lengths are a

lognormal distribution with perhaps a slight right skew. The average document length is

between 4 and 5 term occurrences with very few documents containing more than 10 words.

This distribution is appropriate for this research because the vast majority of the documents

are very short.

Figure 4.7: Distribution of document length in term occurrences, on a log scale.

4.5 Constructing the Semantic Spaces S

Constructing the semantic space S is perhaps the most computationally intensive part of

the proposed algorithm. Constructing S requires performing a matrix factorization using

singular value decomposition and then computing a similarity metric between each pair of

words and between each pair of documents of the corpus in a lower dimensional space. For

the reader’s convenience, an explanation of the notation is provided in Appendix A.
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4.5.1 Latent Semantic Analysis (LSA)

To compute the semantic spaces S, a singular value decomposition (SVD) based method

called Latent Semantic Analysis[43][102] was performed on the training data to decompose

the matrix into a term similarity space, document similarity space, and a set of singular

values denoting the variance explained by each dimension. In the LSA literature, each

dimension is referred to as a “topic.” The TF-IDF score was calculated for each term in each

document in the corpus and represented in a term-document matrix X. The decomposition

was realized as

X ≈ DkΣkWk
T

where Dk represents the first k singular vectors associated with documents and Σk is a

diagonal matrix containing the singular values. WT
k represents the first k singular vectors

associated with the terms22. Then, from Chapter 2, we can construct a semantic space on

terms using

St = WkΣk
2Wk

T

and on documents using

Sd = DkΣk
2Dk

T

There are several rules for choosing K, the number of dimensions to preserve, but most

of them do not seem practical for this dataset. The Kaiser criterion[89] would require keep-

ing almost all dimensions as most singular values are greater than 1, and the cumulative

variance[129] criterion is similar in that an exorbitant number of dimensions would be re-

tained. The typical criterion used in psychometrics for principal components analysis (PCA)

22 While T may be a more obvious choice for notation, it would clash with the transpose operator, so W
was chosen to represent the term “words,” the set of unique terms in the corpus.
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and factor analysis is the graphical Cattell scree test[29] and is also sometimes used for assess-

ing the number of eigenvectors to retain from SVD[185]. The scree test looks for the “elbow”

in the scree plot generated from plotting the magnitude of the singular values against the

index of the singular values in non-increasing order; dimensions corresponding to singular

values to the left of the elbow are retained. The author chose to pick K = 500 as the

494th singular value is the point farthest from the hypothetical straight line that joins the

points associated with the minimum and maximum singular values (the elbow point)[64],

and rounded up to 500 for ease of use. While application dictates the use of method for

choosing the K dimensions, it has been determined that 300-600 dimensions are typically

enough for LSA[102], and this result from the scree test matches this rule of thumb. The

scree plot showing the magnitude of the singular values from SVD is shown in Figure 4.8.

The singular value decomposition was computed using scipy’s SVD library[88] which is

based on ARPACK.

Figure 4.8: Scree plot showing singular value magnitude versus their index.

66



4.5.1.1 Document Similarity

Before a new term can be sampled to include in an augmented bag-of-words, we must know

where to get the candidate term t′im. The document space from LSA is used to select a

document that is semantically similar to the current document dm. A distance metric is

computed between each pair of documents in Sd. Any of the common distance metrics used

in text mining should be sufficient, but cosine similarity was chosen since it is the most

popular for semantic relatedness[113]. Equation 4.2 shows the definition of cosine similarity

given two documents dm and dn in Sd.

δd(dm, dn) = cos (Sdm , Sdn) =
Sdm · Sdn
||Sdm||||Sdn||

(4.2)

Using these computations, it is now possible to select a semantically related document

d′m from this semantic space Sd conditional on an existing document dm as follows. Given a

document dm, we construct a probability distribution over all other documents in the corpus

by taking the cosine distance between each candidate document d′m denoted δd(d
′
m, dm) and

dividing by the sum of all of cosine distance values given dm as in Equation 4.3. Note that

|min δd(dm, ·)| is just the magnitude of the minimum cosine similarity given dm. Adding

the minimum is necessary because cosine similarities may be negative due to the logarithm

calculation in the definition of TF-IDF and allows us to impose a lower bound of 0 on

P (d′m|dm, δd).

P (d′m|dm, δd) =
δd(d

′
m, dm) + |min δd(dm, ·)|∑

q (δd(dm, dq) + |min δd(dm, ·)|)
(4.3)

Figure 4.9 shows the distribution of the document selection probabilities to have a distribu-

tion with a left skew suggesting the probabilities themselves may have something close to a

lognormal distribution in the population. Note that the probabilities are very tiny in the left

tail; most documents have a very small probability of being sampled from Sd. We are mostly

interested in the documents that are not in the left tail as they provide the highest relevance

given dm. For computational efficiency, only the top 100 candidates were considered for each

document and their probabilities renormalized.
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Figure 4.9: Histogram of document selection conditional probabilities on a log scale.

4.5.1.2 Term Similarity

Next, a distance metric is computed between each pair of terms in St. The mathematics for

term similarity are identical to that of document similarity, but computed on terms using St.

For completeness, Equation 4.4 shows the definition of cosine similarity given two terms ti·

and tj· in St regardless of document, and Equation 4.5 shows the term selection probability.

δt(ti·, tj·) = cos
(
Sti , Stj

)
=

Sti · Stj
||Sti ||||Stj ||

(4.4)

Just as with document sampling from Sd, |min δt(ti·, ·)| is just the minimum cosine similarity

and adding it to each value allows us to impose a lower bound of 0 on P (t′im|tim, d′m, δt).

P (t′im|tim, d′m, δt) =
δt(t

′
im, tim) + |min δt(tim, ·)|∑

q (δt(tim, tqm) + |min δt(tim, ·)|)
(4.5)

Figure 4.10 shows the distribution of the selection probabilities to exhibit a near half-normal

distribution[96], or an exponentially decaying tail except near probability zero, likely due to

rounding. Note that the probabilities are very tiny; most words have a very small probability
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of being sampled from St. We are mostly interested in the words in the right tail which are

few and far between, but provide the most relevant words given ti·. Just as with the document

sampling, only the top 100 candidates were considered for each word and their probabilities

renormalized. Table 4.3 shows the top words for some seed ti· terms. Note that the words

closest to the word hair all involve beauty terms. The words closest to the seed term egg

all involve food, and the words closest to the seed term dog are associated with aspects of

owning a dog or associated with dogs themselves. The word magnolia is associated with

many articles discussing furniture with the exception of star which is a part of the name of a

plant. The seed term cat yields a more interesting result. The cat is a very common animal

used throughout Internet culture and memes particularly with respect to “lolcats”[22][33].

While obvious terms such as fur and litter are closely associated with the common use of

the word cat, the word imgur23 is actually the name of a website for uploading small images

for free for use on Internet forums and social media sites. Some of the most common images

on imgur are memes including “lolcats”[105], some of which are grumpy.

Figure 4.10: Histogram of term selection conditional probabilities.

23 http://www.imgur.com
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ti· hair egg cat magnolia dog

t′i·

coloring sandwich imgur room breeds

dye sauce grumpy formal collars

natural buttermilk fur teal thirsty

highlight creamy litter star pointer

beauty grilled dining pajamas retriever

Table 4.3: Terms t′i· maximizing P (t′i·|ti·, D, δt).

4.5.2 Overcoming the Violation of the Assumption of Independence between

Terms and Documents

Although word and document selections are based on similarity up to this point, there

is no guidance as to how adding a new term occurrence t′ changes the semantic cohesion

between some d and d∗. Rather than always sampling a word from St, we augment the

bag-of-words with a new term according to the change in semantic cohesiveness (or lack

thereof) between the original short text dm and the augmented bag-of-words d∗ml. We start

with a bag-of-words dm corresponding to a short text. Next, propose a change to this bag-

of-words as discussed in Section 4.3. Then, we accept the new word into the augmented

bag-of-words according to how well it improves the overall cohesiveness of the overall text.

In natural language processing, pointwise mutual information (PMI) is a common metric

used to measure entropy and cohesiveness between two words or among a set of words[59].

Pointwise mutual information is defined in Equation 4.6 for this use case as

I(dm) =
∑
i 6=j

P (tim, tjm) log

(
P (tim, tjm)

P (ti·) · P (tj·)

)
(4.6)

and is dependent on the probabilities of observing terms ti· and tj· in the corpus D – it is

computed over every pair of words in short document dm. Next, the same computation is

calculated on d∗ml and denoted I(d∗ml). Then, the decision rule illustrated in Equation 4.7

was used to determine whether or not to accept new word t′im from d′m into the augmented

bag-of-words d∗ml. This probability of state change is inspired by simulated annealing[91]
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and similar Markov Chain Monte Carlo methods[150], and a variant was proposed by Xu

and Croft in [179].

P (dm → d∗ml|t′im) ∝ min

(
1, exp

{
I(d∗ml)− I(dm)

T

})
(4.7)

Just as in simulated annealing, T represents the temperature of the system and was chosen

to be 1 so that the change in PMI is the only driving factor in the acceptance probability.

4.6 Topic Models and Classifiers

Once we have a corpus (or set of corpora as will be discussed in the next chapter) con-

taining augmented bag-of-words representations, we can then use a classifier that should

hypothetically perform better than the original classifiers used on the unaltered short texts.

To illustrate and test the theory, a few different topic models and classification methods

were constructed including Supervised Latent Dirichlet Allocation (sLDA) and a promis-

ing, but classical approach using linear support vector machines (SVM) implemented as

libshorttext. We will also compare the experimental results to a linear SVM that uses

semantic vectors from LSA as features instead of the simple bag-of-words approach. This

method was studied in [111], [83] and [12] and is referred to as SVM+LSA for brevity. In the

next chapter, we test the proposed data augmentation method using an ensemble of LSA

and either sLDA or SVM to perform several experiments. In this chapter, we focus only on

the analysis to pick the proper models and hyperparameters that yield the best model fit.

4.6.1 libshorttext: a Linear SVM Classifier Approach

libshorttext[182] is a package that uses SVM classification and prediction from a similar

package called LIBLINEAR and uses some of the state-of-the-art preprocessing algorithms for

short text classification. Feature scaling such as word count and TF-IDF is included as a user

option and the user can remove stopwords, perform stemming and use bigrams24 as features.

24 A phrase containing two words treated as one token[1].
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Since these features are already implemented as part of this research, the corresponding

features in libshorttext were disabled. libshorttext supports Support Vector Classifi-

cation using L1 and L2 penalties as well as logistic regression. The library also supports an

automatic grid search for locating the optimal values for the hyperparameter C. For this

research, part of the training data was sequestered as a validation set and the researcher used

grid search on this validation set to pick the parameter C. Table 4.4 shows the micro- and

macro-averaged performance metrics for each type of classifier generated by libshorttext

and the LSA-based SVM model on the original testing data. The micro- averaged preci-

sion, recall, and F1-score are excluded from Table 4.4 because they are all equivalent to

the micro-accuracy for the special case of a binary classifier. The micro-accuracy takes into

account the distribution of the categories in the original corpus and sums the true positives

and true negatives individually for each category and then normalizes by the total number of

observations. The results show that there is a not much variation in classifier F1-score per-

formance across the feature scaling, penalty types and modeling methods in libshorttext

with micro-accuracy ranging from 0.57 to 0.72 and F1-score ranging from 0.638 to 0.645.

Using word counts with a linear SVM using L2 penalty performs the best by a marginal

amount compared to other binary classifiers according to F1-score. Table 4.5 shows the clas-

sical machine learning diagnostic metrics computed individually on each class for the best

binary SVM model. Similar tables for the other classifiers are provided in Appendix B.1.

From Table 4.5 we see that the F1-score for the category classifiers ranges from 0.14 to

0.72. Three categories, green, overall, and science perform terribly under this classi-

fier. Excluding these three categories, the F1-score ranges from 0.52 to 0.72 which calls for

improvement. overall is a catch-all category for posts not labeled in any other category.

While overall should probably be removed from modeling, and green and science should

perhaps be merged with technology, the researcher felt that it would be of interest to see

how the classifiers would perform leaving them as is. As with the rest of this manuscript,

the hypothesis is that data augmentation can improve these metrics for libshortttext –

most notably the linear L2 SVM with word counts as features. In conclusion, the models and

feature selection methods used in libshorttext do not yield great results, likely because
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Linear SVM L2, TF-IDF 0.911 0.696 0.720 0.624 0.668
Linear SVM L2, Binary 0.889 0.645 0.697 0.628 0.644
Linear SVM L2, Word Count 0.832 0.627 0.725 0.638 0.679
Linear SVM L2, Term Frequency 0.899 0.587 0.701 0.628 0.663
Linear SVM L1, TF-IDF 0.894 0.628 0.703 0.619 0.638
Linear SVM L1, Binary 0.933 0.614 0.691 0.625 0.640
Linear SVM L1, Word Count 0.885 0.622 0.691 0.625 0.639
Linear SVM L1, Term Frequency 0.900 0.601 0.691 0.626 0.641
Logistic Regression, TF-IDF 0.931 0.623 0.700 0.624 0.642
Logistic Regression, Binary 0.840 0.675 0.700 0.619 0.639
Logistic Regression, Word Count 0.898 0.622 0.700 0.620 0.639
Logistic Regression, Term Frequency 0.849 0.567 0.700 0.620 0.639
Linear SVM with LSA Vectors 0.920 0.732 0.855 0.481 0.576

Table 4.4: Evaluation metrics for each category using libshorttext.

the texts included in each document (title) are still too short.

Table 4.6 shows the macro- and micro- averaged performance metrics for SVM+LSA, the

SVM model trained on LSA vectors and this model is used as a second baseline. We see that

the F1-score for the category classifiers ranges from 0.06 to 0.78. We see that the same three

categories: overall, science and green still perform poorly. Again, if we exclude these

three categories, the F1-score ranges from 0.64 to 0.78 which is significantly better than the

SVM model we selected using words as features and L2 penalty.
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Accuracy 0.887 0.852 0.763 0.883 0.755 0.878 0.849 0.875 0.771 0.810
True Positive Rate/Recall 0.400 0.528 0.558 0.143 0.597 0.088 0.526 0.219 0.544 0.592
True Negative Rate 0.994 0.972 0.908 0.993 0.891 0.998 0.969 0.991 0.902 0.953
False Positive Rate 0.006 0.028 0.092 0.007 0.109 0.002 0.031 0.009 0.098 0.047
False Negative Rate 0.487 0.359 0.329 0.744 0.290 0.975 0.361 0.668 0.343 0.295
Precision 0.761 0.775 0.778 0.564 0.773 0.360 0.751 0.652 0.652 0.907
F1 Score 0.524 0.628 0.650 0.228 0.674 0.141 0.619 0.328 0.593 0.716
Estimate of C 1.000 1.000 1.000 1.000 1.000 0.250 1.000 1.000 1.000 1.000

Table 4.5: Per-class metrics for linear SVM with L2 penalty and word count as features, via
libshorttext.
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Accuracy 0.975 0.932 0.819 0.977 0.797 0.979 0.954 0.966 0.873 0.925
True Positive Rate/Recall 0.522 0.702 0.601 0.294 0.692 0.033 0.526 0.143 0.590 0.704
True Negative Rate 0.997 0.990 0.972 0.999 0.954 1.000 0.996 0.999 0.987 0.988
False Positive Rate 0.003 0.010 0.028 0.001 0.046 0.000 0.004 0.001 0.013 0.012
False Negative Rate 0.478 0.298 0.399 0.706 0.308 0.967 0.474 0.857 0.410 0.296
Precision 0.812 0.884 0.847 0.765 0.848 0.933 0.862 0.842 0.887 0.872
F1 Score 0.636 0.783 0.703 0.425 0.762 0.063 0.653 0.245 0.709 0.779
Estimate of C 1.000 1.000 1.000 1.000 1.000 0.250 1.000 1.000 1.000 1.000

Table 4.6: Per-class metrics for SVM+LSA.

4.6.2 Supervised Latent Dirichlet Allocation (sLDA)

Supervised Latent Dirichlet Allocation (sLDA) was described in Section 2.8. As opposed to

classic Latent Dirichlet Allocation, sLDA fits words into topics such that the fitted topics

maximize the likelihood of the target classification, whereas LDA fits topics based on word

counts. sLDA provides a powerful advantage over LDA because there is an inherent coupling

between the fitted topics and the response variable[117]. sLDA with logistic loss also fits

nicely within a binary classifier framework because all of the usual binary evaluation metrics

can be computed. sLDA also has the advantage over SVM in that it supports posterior

class probabilities for each document whereas SVM under most loss functions does not[138].

This means that we can evaluate the model using the standard ROC curve and the holistic

area under the ROC curve (AUC) measure that evaluates a classifier across all choices of

threshold.

Currently there are only two major implementations of sLDA, both provided by the

original researchers. The first uses variational EM to fit a discrete choice model25 [36] and

the second is included as part of a larger R package lda package [31] for topic modeling and

uses Gibbs sampling. After experimenting with both, the R package by Chang was chosen for

this work as it has a much more intuitive interface, supports logistic loss for classification,

and allows the user to easily construct other loss functions, such as multinomial logit for

25 http://www.cs.cmu.edu/~chongw/slda/
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multiclass classification among others. Chang’s Gibbs sampling implementation is also a few

orders of magnitude faster than the variational EM implementation.

As with LDA, several parameters must be determined a priori or estimated: the num-

ber of topics K and the topic distribution over documents hyperparameter α. A series of

10 binary classifiers, one for each label in the corpus was constructed – thus, a series of

label/not-label classifiers, also known as one-hot encoding[26] or a one-versus-all classi-

fier. The same validation set from the SVM experiment was used to perform experiments

varying the following parameters by performing cross-validation and taking the average of

the performance:

1. the number of topics at values of K ∈ {5, 10, 50, 100}, where higher values of K ≥ 100

were pre-determined to display very unstable and inconsistent results, thus not worth

pursuing.

2. the hyperparameter α at typical default scalar values from the topic modeling literature

including 1.0 and 1
K

.

3. the hyperparameter η was fixed at 0.1 as is common throughout the literature, and

very unwieldy to estimate.

4. numerical results are presented for each classifier using the optimal cutoff threshold

from the ROC curve – all of the ROC curve and precision-recall plots are provided in

Appendix C.

It is worth noting that for this work, the Dirichlet distributions were assumed to be

symmetric thus requiring a scalar for α rather than a vector. The rationale of this choice

was that this is the most common treatment of the Dirichlet in general applied topic modeling

literature and an investigation of non-symmetric Dirichlet priors would have required another

dissertation.

The ROC curves and precision/recall curves compute the false positive rate, true positive

rate and precision and recall respectively, at a large number of different cutoff thresholds. A
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cutoff threshold is defined as the posterior probability required to assign an observation as

part of a class[64]. The choice of optimal threshold is context agnostic in this research – in a

business setting, the choice of the cutoff threshold is often predicated by some cost whereas

this work attempts to investigate a general case. The optimal cutoff threshold is the cutoff

that yields performance closest to perfect in theory. In a ROC plot, the perfect theoretical

classifier is one such that the true positive rate is 1.0 and the false positive rate is 0. Visually,

the perfect theoretical classifier is the one that has a ROC curve extending closest to the top

left corner of the plot. The worst theoretical classifier is one that is equivalent to chance,

such that as the true positive rate increases, the false positive rate also increases. Visually,

the worst theoretical classifier is the one closest to the line with slope 1 and intercept 0 in a

ROC curve.

Table 4.7 displays some general global performance metrics derived from ROC and pre-

cision/recall curves for various K and α for each sLDA classifier. The AIC is the Akaike

Information Criterion often used for model selection in regression and lower values purport-

edly represent better models[5][27]. It is important to note that only the AIC values for

each classifier can be compared to AIC values from the same classifier as it is required that

the same data and same response variable be used for AIC comparisons; naturally, each

classifier uses a different response variable and thus AIC values cannot be compared across

target classes. AIC attempts to prevent overfitting by penalizing based on the number of

free parameters. In Table 4.7 we see that as K increases, AIC in general decreases and

bottoms out at K = 50. This suggests that higher values of K yield better models until

K = 50. Note that AIC does not tell the whole story. Since we are mainly interested in

predictive performance, the area under the ROC curve (AUC) provides a globally descriptive

metric for an sLDA model since it can output posterior class probabilities. In Table 4.7,

we see that the AUC is maximized at K = 50. Since both AIC and AUC are optimal at

K = 50 and a higher value of K does not, this suggests that the true optimal K is some-

where between 50 and 100 but for this research we will only consider a discrete set of values

for K. The author of this manuscript feels that AIC is an unusual metric for the machine

learning domain whereas ROC curves, precision/recall curves, F score and AUC are more
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widely accepted. Chang’s lda package provides AIC for sLDA models, thus it was included

in this analysis due to its widespread use in bread-and-butter statistical modeling. The AUC

was computed using the AUC[8] package for R. AUC can be computed either on the ROC

curve or the precision/recall curve[42], but since the author is interested in both positive and

negative classification equally and generally, the ROC AUC is more useful and is already the

more universal of the two metrics.

Table 4.7 and the graphs in Section C.1.2 show the ROC and precision/recall performance

for each classifier at α ∈
{

1, 1
K

}
and various numbers of topics K ∈ {5, 10, 50, 100}. The

ROC curves suggest that as the number of topics K increases, the performance of most

of the classifiers improves, but that at some K > 50, performance decays, perhaps due to

overfitting. For all stable K, the classifier for technology outperforms all other classifiers

with an F1-score ranging from 0.537 to 0.624 and a ROC AUC ranging from 0.875 to 0.904.

The classifier for overall consistently performs much worse than the other classifiers with an

F1-score below 0.1 and an AUC ranging from 0.59 to 0.68. This is not surprising because the

category overall in the corpus includes blogs that are not placed into any other category, as

well as a spattering of blogs that are actually in other categories, but for some reason were

not labeled as such by Technorati editors and/or users. This classifier’s performance does

not improve with increasing K – its F1-score, AUC and AIC remain relatively stable across

K. The classifiers for autos, business, green, politics and science show significant

improvement in F1-score with increasing K up to optimal K. politics and science also

show significant improvements in ROC performance. The researcher hypothesizes that this

may be because the vocabularies for the texts in these categories are more diverse and

discriminative than those in the other categories and thus more topics leads to a better

model. Table 4.7 also shows how classifier performance varies over the hyperparameter α.

It appears that there is no clear effect of choosing one value of α over the other. For that

reason, we will use the common default value α = 1. Using a constant value makes more

sense anyway because it prevents us from worrying about the correlation between K and α

in this research.
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α = 1 α = 1
K

Category K AUC AIC F1 AUC AIC F1

autos 5 0.8410 17457 0.29022 0.8267 17783 0.27333
10 0.8546 16057 0.36616 0.8261 18130 0.27929
50 0.8738 12281 0.50462 0.8705 13916 0.42189
100 0.8602 13124 0.54466 0.8473 14538 0.42391

business 5 0.8865 33256 0.54260 0.8744 34540 0.50367
10 0.8699 34525 0.49937 0.8583 37845 0.45957
50 0.8902 27647 0.58395 0.8909 30589 0.58487
100 0.8741 30647 0.58819 0.8763 30732 0.54964

entertainment 5 0.8008 66183 0.57653 0.7667 76634 0.51021
10 0.8087 65659 0.57032 0.8141 65947 0.58099
50 0.8149 59617 0.56598 0.8285 58642 0.58601
100 0.8131 63579 0.55965 0.8073 62577 0.55784

green 5 0.7278 19347 0.11974 0.8153 17746 0.17103
10 0.7389 19519 0.13449 0.7805 18675 0.16358
50 0.7528 17749 0.20099 0.7749 17963 0.18116
100 0.7457 18302 0.24065 0.7671 17513 0.18352

living 5 0.8215 68893 0.61790 0.8496 60833 0.65834
10 0.8225 68095 0.60908 0.8258 69429 0.61226
50 0.8366 53608 0.63875 0.8429 58664 0.63478
100 0.8269 59504 0.62571 0.8327 60993 0.61944

overall 5 0.6254 19036 0.06093 0.6834 18623 0.08057
10 0.6305 18954 0.06376 0.6846 18355 0.09524
50 0.6128 18742 0.06024 0.6605 18361 0.09228
100 0.5856 19090 0.05533 0.6545 18389 0.09016

politics 5 0.7636 32433 0.22069 0.7750 32895 0.26921
10 0.8159 28301 0.30459 0.7874 31757 0.26755
50 0.8201 26674 0.39929 0.8500 24298 0.41927
100 0.7989 27327 0.39374 0.8397 24349 0.41046

science 5 0.6930 25601 0.14701 0.6474 27166 0.10337
10 0.7489 22182 0.24242 0.7240 24566 0.16279
50 0.7642 19474 0.33949 0.7487 22272 0.22000
100 0.7234 22732 0.25645 0.7207 22408 0.21996

sports 5 0.7926 60133 0.51160 0.8111 55315 0.58050
10 0.8092 52456 0.52896 0.8063 52946 0.53240
50 0.8107 46423 0.53887 0.8224 49590 0.52513
100 0.7952 51657 0.52608 0.8123 50041 0.52200

technology 5 0.8753 38299 0.53739 0.9025 31796 0.61009
10 0.8788 35736 0.54438 0.8984 33088 0.58476
50 0.9005 27684 0.62394 0.9038 28319 0.61734
100 0.8960 28674 0.61921 0.8961 28612 0.60722

Table 4.7: sLDA global evaluation metrics for α = 1 and α = 1
K

.
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In conclusion, the F1-scores for sLDA on most of the classifiers are across all tested values

of K and α were poor, which gives us a lot to work with for the proposed algorithm. Further

research in this manuscript focuses on the sLDA model with α = 1 and K = 50 topics based

on the previous analysis. While optimal K varied slightly across categories, it is believed that

the difference is not significant. Similar to picking one value for α, picking the most common

optimal value for K is simpler for comparisons. Additionally, this research is not interested

in obtaining optimal results for the baseline classifiers – rather, we are interested in the

change in performance between the baseline classifiers and the classifiers using augmented

data. Figure 4.11 shows the ROC curve for this particular sLDA model. Table 4.8 shows

the classical machine learning metrics for the sLDA model at its optimal threshold.
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Accuracy 0.849 0.830 0.743 0.678 0.774 0.575 0.742 0.733 0.770 0.846
True Positive Rate/Recall 0.763 0.808 0.735 0.687 0.745 0.592 0.752 0.663 0.702 0.821
True Negative Rate 0.851 0.833 0.746 0.677 0.784 0.574 0.741 0.735 0.783 0.849
False Positive Rate 0.149 0.167 0.254 0.323 0.216 0.426 0.259 0.265 0.217 0.151
False Negative Rate 0.237 0.192 0.265 0.313 0.255 0.408 0.248 0.337 0.298 0.179
Precision 0.129 0.331 0.448 0.049 0.554 0.029 0.143 0.084 0.378 0.383
F1 Score 0.505 0.584 0.566 0.201 0.639 0.060 0.399 0.339 0.539 0.624
AUC Score 0.874 0.890 0.815 0.753 0.837 0.613 0.820 0.764 0.811 0.901

Table 4.8: sLDA experimental results with optimal K = 50 topics and optimal α = 1.

4.6.3 Comparison of SVM and sLDA for Short Texts

The linear SVM models implemented in libshorttext and the generative model imple-

mented in sLDA provide two different approaches to a similar problem, classifying text.

SVM uses sparse symbolic representations whereas sLDA uses clusters of words as predic-

tors. The SVM method can use a variety of different methods to score each word/feature

including count, binary occurrence and TF-IDF score. The SVM method also can use two

different penalties (L1 and L2) and both a standard fit and a fit with regularlization. On the

other hand, sLDA uses clusters of words grouped into topics such that the topics and other

parameters identified maximize the likelihood of the data, and depend on the number of top-
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Figure 4.11: ROC curve for optimal (K = 50, α = 1) sLDA model trained and tested on
original data.

ics/predictors K and a hyperparameter α on the Dirichlet prior guiding the document-topic

assignment distribution. For sLDA to work as theorized, words are scored using their fre-

quencies. Binary presence/absence and TF-IDF violate the assumptions made in the LDA

model based on conjugacy since TF-IDF scores follow a different distribution than word

counts[19]. sLDA in this work used a logit link function. Based on all of these parameters,

the closest comparable SVM model to sLDA is a linear SVM using L2 penalty and word

count feature scaling. Finally, based on the assumptions of the underlying LDA model, TF-

IDF models are not comparable. It is worth noting that the linear SVM model is compared

to sLDA in this section only to determine which model classifies short texts better a priori.

In Chapter 6, the linear SVM method will be compared to sLDA using the proposed data

augmentation method.

Based on the results in Tables 4.5 and 4.8, linear SVM performs superior to sLDA at

baseline. For categories overall, entertainment, politics and technology, SVM yielded

most impressive differences with sLDA with SVM performed better. The science category

was the only category that performed worse under SVM than under sLDA at baseline.
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4.6.4 A Comment on Classic Latent Dirichlet Allocation (LDA)

A thorough treatment of LDA was presented in Section 2.4. Initially, LDA was considered

for clustering and classifying documents. Using LDA as a benchmark is difficult for this

research because most standard treatments of LDA in the literature use qualitative measures

to evaluate the clustered topics, or researchers simply compare models using likelihood or

perplexity[113] without considering a response variable. Additionally, LDA is an unsuper-

vised method thus topic labeling and ordering is not preserved across samples. That is, topic

2 may refer to topic technology whereas in another sample it may be topic 5 – all we know

is that each topic contains similar documents, but we do not know what the topic label is.

It is also possible that an individual topic estimated from LDA may not map to a single

topic in the Technorati ontology. In an effort to standardize the experimental results, a

manual method of computing metrics and labeling clusters was considered as follows. Given

K topics,

1. classify an augmented document d∗ml as part of topic k if the majority of words in that

document are assigned to topic k,

2. given the true labels for each document, assign the most frequently appearing label in

each topic as the label for topic k, to produce a mapping across iterations,

3. then measure classification error in the same way as supervised learning.

Unfortunately, this method did not yield useful analysis because the topics never mapped

to topics in the original Tehcnorati ontology, even after tuning the hyperparameter α to an

appropriate value for the data. Instead, a method that assigns words to topics to better model

the original classification is preferred. For this reason, LDA was dropped as a proposed model

and replaced with sLDA.
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4.6.5 Other Variants of LDA

Aside from sLDA, there are several other variants of LDA; most of the base variants were

described in Chapter 2. The corpus used for this research extends the document categories

into a hierarchy that can be used with hLDA. For example, the politics category is further

subdivided in the data for U.S. politics and international politics. The hierarchical nature

of the data was ignored for this research and hLDA was not investigated. Another feature

of the data is that some of the topics and words are correlated in the corpus. For example,

the correlated topic model (CTM) may better model certain categories such as green and

science. Naturally, blog posts are dynamic with topics changing over time. A dynamic

topic model (DTM) may model data as more and more data is scraped. While this dataset

provides lots of opportunity for future study with LDA variants, only sLDA was considered

for this manuscript.

4.7 Chapter Summary

In this chapter, we introduced a preprocessing framework using data augmentation inspired

by the bootstrap. The concepts of the statistical bootstrap were reintroduced to the reader

and a description of the modifications used for this research was presented. We also intro-

duced the reader to the experimental data used in this research – a categorized list of blog

post titles extracted from the Technorati blog aggregator. Various exploratory statistics

about the documents and the terms in each document were presented as well as statistics re-

garding document and term selection probabilities used in the proposed sampling technique.

We also discussed the development of the semantic space forming a population for resampling

from a matrix factorization technique called Latent Semantic Analysis. The libshorttext

package and its suite of SVM models based on LIBLINEAR was introduced, and several types

of SVM models, penalty functions and feature types were investigated. We saw that Linear

SVM with L2 penalty and word counts as features performed the best out of all the binary

classifiers. We also looked at another baseline using LSA vectors as features in a linear SVM

and found that this model performed better than the models using bag-of-words in some
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cases and comparable in others. Supervised LDA (sLDA) was introduced for classification

of augmented texts. We saw that SVM did markedly better than sLDA and found that the

best sLDA results occurred when the hyperparamer α = 1 and the number of topics K = 50.
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CHAPTER 5

Experimental Setup

In this chapter, we introduce several research questions and describe the experiments devel-

oped to answer each question. Naturally, describing the experiments requires formalizing the

proposed data augmentation method as an algorithm. As discussed in Chapter 4, we will

use Latent Semantic Analysis (LSA) to induce a population for document and term sam-

pling, and use linear SVM, and Supervised Latent Dirichlet Allocation (sLDA) as the topic

classifiers. The SVM classifier uses word counts as features and the L2 penalty function.

The hyperparameter C was chosen using grid search on a dedicated validation set each time

an SVM classifier was trained. The Supervised Latent Dirichlet Allocation (sLDA) classifier

uses the logit link function, K = 50 topics and Dirichlet hyperparameter α = 1.

5.1 Research Questions

This manuscript investigates and answers several research questions. Naturally, the main

question is what the effect, if any, the proposed data augmentation preprocessing step has on

classifier performance, and this will be investigated through the following research questions:

1. How many words should be sampled to create the larger augmented bag-of-words? Or,

more precisely, how much longer should the augmented document d∗ be to improve

classification?

2. Where should the data augmentation preprocessing occur: in the training phase only,

the testing phase only, or both?

3. Is the final term acceptance step presented in Section 4.5.2 and proposed by [179]

84



necessary? Or, can we accept all candidate terms t′?

4. Which model, SVM or sLDA, yields best performance under data augmentation?

5. Does the optimal model under data augmentation perform better than a baseline SVM

with LSA vectors as features (SVM+LSA)?

5.2 Experiments

Each research question posed in the previous section is associated with an experiment.

5.2.1 Effect of Augmentation Size ε

The proposed data augmentation method is inspired by the bootstrap sampling step and

relies on augmenting a bag-of-words representation with semantically similar terms. It is

important to consider how many terms to add. The parameter ε specifies the relative change

in length between some original short text document bag-of-words d and the augmented

bag-of-words d∗. For example, ε = 1 means that the augmented representation is 100%

larger than the original document length – |d∗ml| = (1 + ε)|dm| = 2|dm|. Naturally, this

parameter could be unbounded, but that would be impractical for research. Additionally, it

is the researcher’s belief that as ε grows, there is potential for a great amount of bias to be

introduced, particularly as the vocabulary of St is exhausted. This is an assumption that

can be tested in further research, but is not within the scope of this manuscript. A value

of ε = 0 denotes a completely unchanged document since substituting and removing words

from a short document is not considered in this research. The special case (baseline) where

ε = 0 was discussed in Chapter 4 and simply consisted of training and testing with the raw

data. This research experiments with varying ε within the range 0.1 ≤ ε ≤ 2 in increments

of 0.1. The upper bound of 2 was chosen somewhat arbitrarily, and represents the situation

where there are many more new terms in the augmented representation than there were in

the original text. The upper bound could have been set higher, but such a value would be

redundant.
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5.2.2 Effect of When Terms are Sampled for Augmentation

Another point of interest in this research is when the augmentation step should be applied.

Initially, this research only considered applying the augmentation step to both the training

and testing data as it is customary to perform the same preprocessing on both the training

and test data in machine learning[65]. The researcher determined that it would be interesting

to also experiment with two non-standard approaches – using the data augmentation method

on only the training data (denoted as variation DA1), and using it only on the testing data

(denoted as variation DA2). The hypothesis was that performing the augmentation step on

only the training data would add more signal to the resulting classifiers and make them more

“sensitive” to the terms in the testing data. On the other hand, the reasoning behind only

using the augmentation method on the testing data is that augmented data may “activate”

more features in the classifier allowing more accurate prediction. To illustrate this concept,

consider standing in a noisy room with a microphone at the other end that records only one

particular voice and nobody else’s. DA1 represents the case where the microphone is better

tuned to the frequency of the speaker’s voice and is thus more sensitive to it. DA2 would be

the case where the microphone remains as is, but the speaker yells very loudly to overcome

the noise in the room and thus be recorded. Variation DA0 refers to the original raw data

where augmentation was not used anywhere, and DA12 refers to the case where augmentation

is used for both the training and testing data. In [65], Gonzalez and colleagues suggest that

DA1 and DA2 are unmatched training and testing sets, whereas DA12 is the traditional matched

training and testing set situation.

5.2.3 Effect of the Final Acceptance Probability Step

A third experiment involves the addition of the final acceptance probability step introduced

in Section 4.5.2. This experiment compares performance of classifiers both with and without

this final acceptance probability step. The experiments without the final term acceptance

step consists of augmented corpora D∗l that accept all sampled t′ terms regardless of their

change on semantic cohesiveness. The experiments with the final term acceptance step
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consist of augmented corpora containing only the terms selected probabilistically based on

change in semantic cohesiveness. The researcher calls each one of these setups an augmenta-

tion strategy for brevity. In the experiments, the augmentation strategy is often combined

with the variations discussed in Section 5.2.2 and together referred to as a experimental

configuration, for brevity.

5.2.4 Choice of Model

As discussed in Chapter 4, linear SVM and supervised LDA were chosen as the two models

for analysis. Separate experiments were evaluated for both models for research questions

1, 2, and 3. We used the AUC to evaluate model performance for the sLDA model since

it allows the construction of posterior class probabilities, and we used F1-score to evaluate

model performance for the SVM model. Although accuracy was provided in the tables in

Chapter 4, it was not used to evaluate either classifier because the class distributions are

imbalanced, so it is not a good measure for this reason. In Experiment 4, we compare SVM

and sLDA directly using the F1-score metric.

5.2.5 Performance of Data Augmentation vs. Baseline

An SVM model using LSA vectors as features was used as a second baseline. This final

experiment compares performance for the optimal classifier under data augmentation against

this baseline.

5.3 Controlling for Variability in Experiments

As mentioned in Section 4.1, bootstrapping is a probabilistic process and generates a new

sample at each iteration. In this work, each iteration of the data augmentation step generates

a new corpus D∗l containing augmented texts of length |d∗ml| = (1 + ε) |dm| each. Each

corpus consists of a training, validation and testing set and the documents within each set

remains consistent across all iterations. Depending on the particular experimental variation,
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only certain parts of the corpus may be augmented. In DA1 and DA12, the training set is

augmented. In DA2 and DA12, the testing/unseen set is augmented. The validation set is

processed the same as the training set for consistency. Since each iteration yields different

data, the researcher decided to perform 100 iterations at each parameter set which generated

100 different versions of each short text under each experimental configuration, and was also

proposed by [74]. Each corpus was used to train a separate classifier and each classifier has

its own set of performance metrics. The researcher believes that these 100 sets of results infer

the population distribution of the performance metrics for each experimental configuration.

It is worth noting that each time an SVM classifier was trained, we used a grid search to

select the hyperparameter C on a separate validation set since its value relies heavily on the

distribution of the data which is different in each corpus[34][151]. The C parameter tended

to vary quite a bit depending on the category and the value of ε. The validation set was

not used for the sLDA classifier as the hyperparameters were held constant based on the

analysis performed in Chapter 4.

Using the two (2) classifiers described in Chapter 4, 100 iterations were run for all com-

binations of ε (20), the three DAx variations (3), with and without the final acceptance step

(2), for each target class (10), resulting in a total of approximately 240,000 trained classi-

fiers. For the analyses in Chapter 6 the metrics were averaged over various experimental

parameters.

5.4 Formalizing the Experimental Algorithms

We have described the data augmentation procedure and discussed several parameters and

experiments to test the efficacy of short text classification using the proposed method. In

this section, we formalize the experiments as algorithms. Due to the number of moving

parts, we provide the framework of the experiments as pseudocode in this section. Table 5.1

shows which models and datasets are used for each of the data augmentation variations.
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Where augmentation
occurs...

Training Data Testing Data Model Used

DA0
It does not;
raw data, not augmented

Raw data
not augmented

Raw data
not augmented

Trained from
raw data

DA1 Training data only Augmented
Raw data
not augmented

Trained from
augmented training data

DA2 Testing phase only
Raw data
not augmented

Augmented
Use classifier from DA0

to predict on augmented data.

DA12
Both phases;
fully augmented.

Augmented Augmented
Use classifier from DA1

to predict on augmented data.

Table 5.1: Models and data used for each data augmentation algorithm variation.

5.4.1 Data Generation

The proposed data augmentation method is a preprocessing framework, so most of its char-

acter comes to life in the data generation phase. Algorithm 10 shows the pseudocode for

generating experimental training and test sets that answer each of the questions posed in

the previous section. Data is generated for the following situations and parameters:

1. differing amounts of augmentation (0.1 ≤ ε ≤ 2),

2. phase at which augmentation occurs (the DAx variation),

3. each augmentation strategy: with and without the final probabilistic acceptance step

based on PMI,

4. for each, the term sampling process is performed 100 times to account for variability

in the sampling process.

The pseudocode in Algorithm 10 shows the general control flow of the data generation

stage, but most of the work is performed in the generate data routine and is illustrated in

Algorithm 11 where we can more clearly see the changes in processing that occur based on

variation.
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Algorithm 10: Experimental data generation (augmentation)

Data: Corpus D of short texts divided into Dtrain, Dval and Dtest, semantic space S
Result: Training, validation sets, testing sets, one set for each combination of experimental parameters
foreach aug strategy ∈ {without pmi, with pmi} do

foreach variation ∈ {DA1, DA2, DA12} do
for ε = 0.1 to 2.0 by 0.1 do

for l = 1 to 100 do
D∗l train, D

∗
l val, D

∗
l test =

generate data
(
Dtrain, Dval, Dtest, S, aug strategy, variation, iteration, ε

)
write

(
D∗l train, D

∗
l val, D

∗
l test

)

Algorithm 11: Procedure generate data

Input: Train, validation and test sets Dtrain, Dval, Dtrain, semantic space S, aug strategy
∈ {without pmi,with pmi}, variation, iteration, ε

Output: Augmented train and test sets, D∗l train, D
∗
l test

if variation = DA1 or variation = DA12 then
// augment the training set

D∗l train = augment documents
(
Dtrain, ε, aug strategy, S

)
D∗l val = augment documents

(
Dval, ε, aug strategy, S

)
if variation = DA2 or variation = DA12 then

// augment the testing set

D∗l test = augment documents (Dtest, ε, aug strategy, S)

return D∗l train
, D∗l val

, D∗l test

Algorithm 12 shows the pseudocode for the resampling stage, the process described in

detail in Section 4.3. The procedure weighted sample is taken to be a function that chooses

an element proportional to a similarity function, in this case cosine similarity. If f is the

mathematical equivalent of weighted sample, we have

f(v, xi) ∝ cos

(
v · xi
||v||||xi||

)

where v is a vector representing a lower dimension representation of a term or a document

and xi represents a sampling unit in the semantic space being queried. The procedure

tfidf sample samples a word from the current document dm proportional to its TF-IDF

score and that of the other terms in the document.
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Algorithm 12: Procedure augment documents

Input: Some corpus D, semantic space S, aug strategy ∈ {without pmi,with pmi}, iteration l, ε
Output: Augmented corpus, D∗l
for dm ∈ D do

d∗ml = dm
while |d∗ml| < (1 + ε) |dm| do

// select a document d′m from Sd according to semantic similarity to dm, δd
d′m = weighted sample (dm, Sd)
// select a term tim in document dm according to influence via TF-IDF,

// as a target for resampling

tim = tfidf sample (dm)
// Sample a word t′im from d′m most related to tim
t′im = weighted sample (tim, St, d′m)
if aug strategy = with pmi then

// Compute PMI with and without the new term t′im.

I (dm) = pmi (dm) ; // See Equation 4.6

I
(
d∗ml

)
= pmi

(
d∗ml

)
p ∝ min

(
1, 1

Z
× exp

{
I(dm)− I(d∗ml)

})
r = rand()
if r ≤ p then

d∗ml = dm ∪ t′im

else
d∗im = dm ∪ t′im

D∗l = D ∪ d∗ml

return D∗l

5.4.2 Classifier Training and Evaluation

Once all of the experimental data was generated using the data augmentation framework,

we trained classifiers using the data and then evaluated their performance using the true

labels. Algorithm 13 shows the process of training each of the experimental models over 100

iterations for each experimental configuration, category and choice of augmentation rate ε.

The procedures

• train svm model,

• train slda model,

• predict,

• evaluate model,

• grid search

and the various load * procedures are black box that need not be defined in the pseudocode.
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5.5 Chapter Summary

In this chapter, several research questions related to the proposed data augmentation method

were proposed and discussed. For each research question, the researcher developed an ex-

periment to determine if the augmentation process improves classification performance on

short texts, and which parameters, if any, affect the performance of the technique. Three

variations of the data augmentation method were presented – each variation introduces the

data augmentation step during different phases. Two modes of analysis were also introduced,

a baseline mode that simply accepts all sampled terms into an augmented bag-of-words, and

a second mode that accepts words according to how the term changes the semantic cohe-

siveness of the text using pointwise mutual information. We also look at the effect of the

size of the augmentation, a parameter denoted as ε. Of course, we also consider whether

or not performance is better for the linear SVM method or the supervised LDA method.

Pseudocode was also presented as a way to formalize the experiments.
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Algorithm 13: Experimental model training and evaluation

Data: Input corpora D∗ for training, cross-validation, and testing, true class labels y.
Result: trained models m and evaluation data e.
foreach model ∈ {svm, slda} do

foreach aug strategy ∈ {without pmi, with pmi} do
foreach variation ∈ {DA1, DA2, DA12} do

for ε = 0.1 to 2.0 by 0.1 do
foreach cat ∈ categories do

for l = 1 to 100 do
if variation = DA1 then

D∗l train = load augmented training data(aug strategy, ε, cat)
D∗l val = load augmented validation data(aug strategy, ε, cat)
D∗l test = load raw testing data()

else if variation = DA2 then
D∗l train = load raw training data()
D∗l val = load raw validation data()
D∗l test = load augmented testing data(aug strategy, ε, cat)

else if variation = DA12 then
D∗l train = load augmented training data(aug strategy, ε, cat)
D∗l val = load augmented validation data(aug strategy, ε, cat)
D∗l test = load augmented testing data(aug strategy, ε, cat)

if model = svm then
C = grid search(D∗l val,yval)

m = train svm model
(
D∗l train, C

)
else if model = sLDA then

m = train slda model
(
D∗l train,K = 50, α = 1

)
// predictions may be labels (SVM) or probabilities (sLDA)

ŷ = predict
(
m, D∗l test

)
e = evaluate model(ŷ,y)
write(m)
write(e)
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CHAPTER 6

Results

In this chapter we review the results of the experiments introduced in Chapter 5 and provide

discussion of the results. The results are presented for both the Supervised Latent Dirichlet

Allocation (sLDA) and libshorttext Support Vector Machine (SVM) models. Since sLDA

is capable of reporting posterior probabilities, ROC curves are presented as a visual means

of evaluating the sLDA classifier’s performance. The AUC summarizes ROC performance

by computing the area under the ROC curve. It is the researcher’s opinion that the use of

posterior probabilities is preferred, when possible, because it allows the use of a visual aide

in determining classifier performance rather than simply a statistic.

Another metric used to evaluate a classifier’s performance is the F1-score, the harmonic

mean of precision and recall. According to [86], F1-score may be a more appropriate measure

when the class distribution is imbalanced as it is in this dataset (see Table 4.1) and when

the positive class is more crucial than the negative class. However, the F1-score is threshold

dependent – that is, the F1-score is computed by first picking a probability threshold along

the ROC curve (or precision-recall curve) and then computing the F1-score from it. This

differs from the AUC as the AUC describes a classifier’s performance across all thresholds.

Researchers typically pick the threshold that maximizes a particular metric such as accuracy,

true positive rate, or F1-score[132]. Despite this advantage, we lose a lot of information by

using only the F1-score with the sLDA model. On the other hand, the SVM model does

not natively allow the computation of posterior probabilities so the ROC curve concept does

not apply. For this reason, the researcher instead chose to use F1-score to summarize the

performance of the SVM models. Since there is no ROC curve, there are also no thresholds

to consider, only one F1-score exists for each SVM classifier.
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In Sections 6.1, 6.2, and 6.3, results are reported for each model separately and only com-

pared within each model type. That is, there is a separate analysis for the sLDA model and

the SVM model and comparisons are only made for like classifiers – across sLDA classifiers

or across SVM classifiers, but not between sLDA and SVM classifiers, except in passing. In

Section 6.4, sLDA and SVM models are compared directly. For that one experiment, both

models must use the same metric so the researcher identified the optimal threshold for the

sLDA model from the ROC curve and computed the F1-score. This F1-score can then be

directly compared to the F1-score from the SVM model. Finally, in Section 6.5 we compare

the best model under the optimal data augmentation strategy to a baseline SVM model

using LSA vectors as features.

Before proceeding, it is important to describe some of the vocabulary used in this chapter.

The parameter ε is referred to the augmentation rate and defines how many terms we sample

into the bag-of-words representation. An experimental variation specifies when the data

augmentation step takes place – in the training data only, in the testing data only, or in

both datasets. These variations are denoted DA1, DA2 and DA12 with DA0 denoting the raw

data where augmentation occurs in neither the training set nor the testing set. There is also

the final probabilistic term acceptance step using pointwise mutual information. Experiment

3 tests classifier performance both with and without this acceptance step, and is referred to

as an augmentation strategy. For simplicity, each combination of variation and augmentation

strategy is referred to as an experimental configuration.

6.1 Experiment 1 – Effect of Augmentation Size ε

The parameter ε denotes the size of some augmented bag-of-words d∗ relative to the original

short text document d as follows

|d∗| = (1 + ε) |d|

A particular value of ε is associated with a ε% increase in the length of d. For example, ε = 1

represents doubling the length of d, a 100% increase. The case where ε = 0 is synonymous
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with variant DA0, that is, the raw data – no augmentation performed at all.

6.1.1 sLDA

Figure 6.1 shows the effect of the choice of ε on the sLDA classifier performance as mea-

sured by AUC. A subplot exists for each experimental variation. Under each experimental

configuration for the sLDA classifiers, it seems that ε = 0.3 yielded the highest AUC with

surrounding values providing similar performance in AUC. At values ε ≥ 0.8, the classifiers

for each topic begin to perform worse than the DA0 raw data baseline. We see that overall,

the augmentation process seems to give an immediate boost to performance over the classi-

fiers trained on the raw data alone (DA0). The only category classifier that did not seem to

be affected by the data augmentation is the elusive overall category. There is a significant

bump in classifier performance as measured by AUC for smaller values of ε. In the raw data,

AUC ranged from 0.61 to 0.9 but at ε = 0.3 it ranged from 0.61 to 0.93 (the lower bound is

0.8 if we exclude overall). While it may seem odd that this bump is followed by a steady

decline in performance, the researcher has a hypothesis. It is believed that the bump in

AUC for small values of ε is due to the addition of a single word to the bag-of-words rep-

resentation, and the sampling procedure ensures that a highly discriminative or influential

term is selected at the optimal ε. Adding further words to the text may add more noise in

the form of bias deteriorating the performance of classifiers with higher values of ε. As we

saw in Figure 4.7, the average text in this corpus contained between 4 and 5 words. For a

document with 4 terms and ε = 0.3, we have 4ε = 1.2 so we would add one additional term

at each iteration, and a second term 20% of the time. Similarly, for a document with 5 terms

and the same ε, we have 5ε = 1.5 and would sample an additional word 100% of the time

and a second additional word 50% of the time.

Since it is apparent that aside from overall, the category does not really influence the

best choice for ε in this plot, Figure 6.2 collapses out category and shows the AUC across

all experimental configurations. From this plot, it is easier to determine an optimal value of

ε in this research. It is more apparent that AUC peaks at ε = 0.3 with a small window such
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Figure 6.1: sLDA classifier performance by augmentation size ε, experimental configurations
and category.
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Figure 6.2: sLDA ROC AUC performance by experimental configuration averaged over
category.

that values of ε in 0.2 ≤ ε ≤ 0.4 performed optimally in this experiment. The results also

suggest that classifier performance is good for ε < 1 if we take the researcher’s AUC cutoff

of 0.7 as a definition of “good” ([49] suggests 0.65 to 0.85 as a lower bound for a good AUC).

When ε ≥ 1, AUC performance drops below 0.7. This conclusion makes sense because once

ε = 1, the number of terms added to the bag-of-words begins to exceed the number of terms

in the original bag-of-words representation and if our sampling technique is not ideal, it is

hypothesized that these new terms add more noise and/or bias. It appears that AUC perfor-

mance was dependent on experimental configuration. DA2, where the augmentation method

is only used on the test set seems to perform the best as ε increases, and performance decays

more slowly than with the other variations; in fact, it never drops below 0.7. Surprisingly,

DA12 decays the fastest and performs the worst as ε increases. This is surprising because in

machine learning the same transformations are usually applied to the training and testing

sets[65] and so it would seem that matched datasets would yield the best performance. The

PMI word acceptance probability step does not seem to have a consistent effect. In DA1 and
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DA12, the PMI acceptance probability step seems to improve AUC, whereas in the DA2 it is

associated with worse performance, though the difference is likely not to be significant.

Finally, Figure 6.3 displays the diagnostic ROC curve for each classifier at optimal ε = 0.3

under each experimental configuration. The black dashed curve shows the performance of the

classifier on the original data without augmentation (DA0). A model with higher predictive

performance will have a curve that extends closer to the upper-left corner of the plot[64].

We see that under each configuration, the classifiers developed using the data augmentation

method outperform the classifiers developed without. As usual, the only exception is the

overall category which seems to not cooperate under any circumstances.
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Figure 6.3: sLDA ROC performance by category and experimental configuration.
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6.1.2 SVM

Figure 6.4 displays the effect of ε on the F1-score used to evaluate model performance

for SVM. Similar to the sLDA models, performance is best at lower values of ε in the

approximate range of 0.2 ≤ ε ≤ 0.4 and then declining for higher values. In the raw data

with no augmentation, F1-score ranges from 0.05 to 0.741 (the lower bound is 0.323 without

overall). At ε = 0.3, F1-score ranges from 0.02 to 0.84 (the lower bound is 0.45 excluding

overall) Interestingly, the improvement at lower values of ε is more stark than it was with

with the sLDA models. In Figure 6.5 we average F1 performance across all categories since

the majority of categories exhibited the same behavior. The DA2 variation again seemed to

perform the best over all values of ε. The two other variations DA1 and the legacy DA12

performed significantly worse as ε increased. The term acceptance step did not seem to have

a significant effect on variations DA1 and DA2 but had a substantially positive effect on DA12

as ε increased, a difference of about 8% in AUC at its most divergent point.

6.1.3 Experiment 1 Conclusions

In the previous chapter, it was hypothesized that a value of ε between 0.5 and 1.0 would yield

the best performance because such a choice would yield a substantial number of resampled

terms without overwhelming the bag-of-words representations with new, potentially poor,

terms. The results from this experiment disproves this hypothesis and the optimal value of

ε for both the sLDA and SVM models is approximately 0.3. It turns out that this optimal

value is likely associated with sampling only a single term and that resampling one influential

term is enough to improve classifier performance under data augmentation. Interestingly,

this phenomenon of best performance occurring at lower augmentation rates was also noted

in [143].
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Figure 6.4: SVM classifier performance by experimental configuration, augmentation rate ε
and category.
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Figure 6.5: SVM F1-score performance by experimental configuration averaged over category.

6.2 Experiment 2 – Effect of When Terms are Resampled

Recall that the experimental variations DA1, DA2 and DA12 differ only in when the data

augmentation algorithm is applied. DA0 is the original data with no augmentation – the

raw data. In most machine learning applications, the same transformations are applied to

both the data used to train a classifier as well as the unseen data passed to the model for

classification or for evaluation [65]. When both the training and testing data is augmented

with the proposed method, it is referred to as variation DA12, matched training and testing

sets, both augmented. In DA1, the proposed data augmentation algorithm is only applied on

the data used to train the model (the training data) and the raw unseen data is classified

by the model. DA2 is the inverse, where a classifier is trained on the raw data without aug-

mentation, but the unseen data is augmented by the proposed algorithm and then classified

by the model trained on the augmented data. To test if there is a difference in performance

for both the sLDA and SVM models based on when the data augmentation step is applied,

the researcher compared performance for all three experimental variations for each category
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and model. Finally, category was “averaged out” and differences over ε were compared.

6.2.1 sLDA

Figure 6.6 shows the effect on ε and variation across each category. The main takeaway

from this graph is that DA12 with the matched training and test sets consistently yielded the

worst performance under the proposed data augmentation method than the two variations

using unmatched training and testing sets. The difference in performance is nearly static

across all categories, though the decay in performance under DA12 is most prominent in the

autos, business and technology categories.

Figure 6.7 displays the ROC AUC performance of the sLDA classifier at optimal ε = 0.3

across experimental configurations. We can see that the AUC performance for each classifier

improves by about 3% to 7% except for the usual overall category which does not see any

improvement.

Figure 6.8 provides a summary of sLDA classifier performance at the optimal variation

DA2 and at the optimal augmentation rate ε = 0.3. We see that AUC ranges from 0.61 to

0.94 (the lower bound is 0.81 excluding overall) under this optimal configuration, whereas

in the raw data in the white bars the AUC ranged from 0.61 to 0.9 (the lower bound was

0.75 excluding overall).

After averaging over all categories, we can see in Figure 6.9 that the matched training

and testing sets of DA12 yielded significantly worse performance over ε than the unmatched

variations DA1 and DA2. We can then take a closer look at classifier performance not only at

the optimal augmentation rate ε but also the optimal experimental variation, DA2. Figure 6.9

is an abbreviated version of Figure 6.2, the latter displaying all augmentation strategies as

well.
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Figure 6.6: sLDA ROC AUC performance by experimental variation, ε and category.
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Figure 6.7: sLDA model ROC AUC performance by augmentation strategy, variation and
category at ε = 0.3.
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Figure 6.8: sLDA model ROC AUC performance at DA2 variation by category and augmen-
tation strategy at ε = 0.3.

Figure 6.9: sLDA ROC AUC model performance by variation and ε averaged over category.
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6.2.2 SVM

Figure 6.10 shows the effect of ε and variation on SVM F1-score performance across each

category. We see that DA2 performs the best across ε as usual, and the matched case variation

DA12 performing the poorest.

Figure 6.11 shows F1-performance for ε = 0.3 for each category across all experimental

configurations. Performance improvement depends on category with gains of 14% for the

entertainment to 22% for sports. There does not appear to be a significant difference

among the experimental variations. Of course, the overall category classifier is the only

one that performs worse than the DA0 baseline, by about 2%. Improvement for the politics

and technology categories was modest at 4% and 11% respectively.

Figure 6.12 shows SVM performance for each augmentation strategy at optimal ε and

optimal variation DA2. We again see that in all categories except overall, the experimen-

tal variations outperform the DA0 baseline. Improvement over baseline varied greatly over

category with improvement as small as 1% for politics to 21% for sports. overall per-

formed about 2% worse than the baseline. Finally, Figure 6.13 shows F1-score performance

averaged over all augmentation strategies and categories. Again, we see that the matched

training/testing set case performs the worst, about 5% worse than DA1 and about 8% worse

than DA2
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Figure 6.10: SVM F1 performance by experimental variation, ε and category.
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Figure 6.11: SVM model F1-score performance by augmentation strategy, variation and
category at ε = 0.3.
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Figure 6.12: SVM model F1 performance for DA2 variation by category and augmentation
strategy, averaged over all ε.

Figure 6.13: SVM model F1 performance by variation and ε averaged over all categories.
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6.3 Experiment 3 – Effect of the Augmentation Strategy

One concern that the researcher had when developing this algorithm was the heavy reliance

on conditional probabilities for selecting terms within each text. Recall that the bootstrap

samples observations independently from a population. In the proposed data augmentation

method, observations are sampled conditionally based on the other terms in the bag-of-words

representation and on the semantic space S where S represents an approximate population.

The concern is that the sampling dependency within each bag-of-words may be weighted too

heavily when compared to the population. To counter this potential issue, the researcher

proposed adding a final probabilistic term acceptance step (see Section 4.5.2) using pointwise

mutual information (PMI). This final step accepts a term into the augmented bag-of-words

according to how likely the term is to occur in the bag-of-words organically based on the

semantic space S. Both models were evaluated across all variations both with and without

this final step.

6.3.1 sLDA

Figure 6.14 shows AUC performance for the sLDA model across all values ε both with and

without the term acceptance step. There is practically no difference for ε < 1 and for higher

ε the difference is negligible, at most 2%. The bar chart in Figure 6.15 shows the average

AUC performance for the optimal ε and variation DA2 for all categories and confirms this

finding. In this chart, it seems that both augmentation strategies improved performance

slightly, by about 5% over the raw data with no augmentation. Thus, under the proposed

data augmentation method, there was no significant difference in performance with and

without the final probabilistic term acceptance step.
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Figure 6.14: sLDA model ROC AUC performance by augmentation strategy averaged over
category and ε

Figure 6.15: sLDA model ROC AUC performance by augmentation strategy averaged over
category and variation.
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6.3.2 SVM

Figures 6.16 and 6.17 imply a similar conclusion with respect to the effect of augmentation

strategy and ε on classifier performance. The effect of augmentation strategy seems to be

negligible across all ε though the probabilistic term acceptance step performed narrowly

better by about 2%. When looking at only the augmentation strategies, it appears that

SVM performed about 15% better over baseline while there was practically no difference

between the experiments with and without the term acceptance step.

Figure 6.16: SVM model F1 performance by augmentation strategy averaged over category
and ε.

6.3.3 Experiment 3 Conclusion

The purpose of adding the probabilistic term acceptance step was to correct for heavy de-

pendencies in sampling within each bag-of-words, most notably due to the reliance of condi-

tional probabilities in resampling terms. This experiment shows that this term acceptance

step made no significant difference in classifier performance and thus we can conclude that

it is not an important or necessary part of the proposed data augmentation algorithm at

this time. While the implementation of the term acceptance step was in good faith, it is
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Figure 6.17: SVM model F1 performance by augmentation strategy averaged over category,
ε and variation.

important to recognize that the pointwise mutual information (PMI) calculation relies on

the same semantic space S as the original term resampling. Since both processes rely on the

same underlying distribution, it could be reasonably assumed that they would both yield

similar results.

6.4 Experiment 4 – Effect of Model Choice: SVM and sLDA

Next, we look at how the choice of model affects classifier performance. Two models were

chosen for this research: Supervised Latent Dirichlet Allocation (sLDA) and a modification

of the linear SVM implemented as libshorttext specifically for short texts. It is impossible

to test the proposed data augmentation method on every text classification algorithm known

to man, but topic models are timely and SVM is classic and both classes of models are used

extensively in the literature. sLDA can use a variety of link functions, in this case the logit.

This leaves Näıve Bayes and perhaps Random Forests as the only two “base” classifiers as a

subject for future research.
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Previously in this chapter we used AUC as a measure of performance for the sLDA model.

In order to competently compare performance between sLDA and SVM, the F1-score is used

instead for the analysis of this experiment since there is no concept of AUC in this base

SVM model. First we look at the F1-score for both models across variation, augmentation

strategy, augmentation rate ε and category. Figure 6.18 shows F1 performance for both

classifier types across all ε for each category and is essentially a combination of Figures 6.6

and 6.10 that includes augmentation strategy and uses F1-score instead of AUC for the sLDA

classifier. The major takeaway is that SVM consistently performed better than sLDA for

lower, more optimally performing values of ε for all categories except overall. Somewhere

in the range 0.7 ≤ ε ≤ 1.0 the difference between the two classifiers becomes negligible for

most categories as classifier performance for both also drops.

Figure 6.19 shows classifier performance for all variations for both the sLDA and SVM

models. Similar to the results discussed previously in this chapter, we see that at small ε

there is a negligible difference among the variations at low ε including optimal ε, but as

ε increases, DA2 performs the best, followed by DA1 with DA12 performing the worst. For

the sLDA model, the unmatched training and testing set variations DA1 and DA2 perform

significantly better than the matched case DA12. For the SVM on the other hand, the three

variations perform significantly different from each other.

Since F1-score for both sLDA and SVM are on the same scale, we studied the effect of

classifier type by computing the difference in F1-score by subtracting the sLDA F1-score

from the SVM F1-score for the rest of this analysis. Figure 6.20 shows the difference in

F1 performance between both classifiers for the three experimental variations and the two

augmentation strategies.

SVM performed 17% to 22% better than sLDA across all experimental variations and

augmentation strategies. For variation DA12, the improvement over sLDA is greater for

the cases including the term acceptance step than without by about 5%. In the other two

variations, SVM performed better than sLDA by about the same amount.
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Figure 6.18: Comparison of sLDA and SVM performance via F1-score by category and
variation, averaged over ε and augmentation strategy.
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Figure 6.19: Comparison of sLDA and SVM performance via F1-score by variation and ε,
averaged over category and augmentation strategy.

Figure 6.20: Difference in F1-score between sLDA and SVM by experimental configuration,
averaged over category and ε.
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Figure 6.21 quantifies how much better SVM performs than the sLDA classifier across all

of the categories in the corpus. Since performance decreases significantly as ε increases and

very few differences can be discerned at higher values of ε, we observe the performance only

at the optimal ε = 0.3. In nine out of the ten categories, SVM performed better than sLDA

across all variations and augmentation strategies. The elusive overall category seems to be

better predicted by sLDA by about 4%. On the remaining categories, sLDA performed at

least 8% better and as high as 18% better. SVM saw the largest improvement over sLDA

on the science, sports and entertainment categories.

Figure 6.21: Difference in F1-score between sLDA and SVM by category, averaged over
configuration and ε.

Finally, Figure 6.22 shows the improvement of sLDA over SVM for each category over

all variations and augmentation strategies and is provided for completeness. We see that for

small ε, the difference between the two classifiers is fairly small and in many cases increases

significantly as ε increases. This suggests that SVM may be a more “stable” model with

respect to ε as performance does not drop off as sharply as it does with sLDA. It does appear

that sLDA performed better than SVM on the DA1 variation at higher ε, but this is not of

much significance since these values of ε are much higher than the optimal ε = 0.3.
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Figure 6.22: Difference in F1-score between sLDA and SVM by category and configuration,
averaged over ε.
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6.4.1 Experiment 4 Conclusion

The purpose of this experiment was to determine how well the proposed data augmentation

method generalizes to different models types and study the differences between them under

the proposed framwork. Supervised Latent Dirichlet Allocation (sLDA) with logistic loss

and libshorttext implementation of SVM were the models studied. As one would expect,

results in the literature vary regarding which model provides “better” results, with [172]

finding that SVM performed better than sLDA and [7] finding that sLDA performed better

than SVM. In this research, libshorttext SVM, a variant of SVM designed specifically for

short texts, performed better than sLDA. The only case in which sLDA performed better

than SVM was in variation DA1 without the term acceptance step for large or suboptimal ε,

and also when predicting the peculiar overall category.

6.5 Experiment 5 – Comparison of Data Augmentation with SVM

using LSA Vectors

Finally, we compare the results of the best classifier under the proposed data augmentation

method to the SVM that uses LSA vectors as features. We denote this special SVM model

as SVM+LSA in this section. The optimal model under data augmentation was the DA2 test-

set-only augmentation with ε = 0.3 and no final term acceptance step applied to SVM, and

in this section we denote this model DA∗SVM. The original data with no augmentation applied

to SVM is denoted DA0SVM.

Table 6.1 displays the F1-score for each category classifier across all three models as well

as the mean and median F1-score across all categories. The SVM + LSA baseline produced F1-

scores between 0.063 and 0.783, but without the outliers resulting from green, overall and

science, the range was 0.576 to 0.783. The optimally augmented SVM model DA∗SVM yielded

F1-scores between 0.02 and 0.84, or between 0.636 and 0.84 once the three low performers

were removed. In two categories, overall and politics, DA∗SVM performed worse than the

SVM+LDA baseline by about 0.04 and 0.02 respectively. This may suggest that the problematic
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overall category and the politics should be fit with some sort of topic model by itself

rather than using bag-of-words with augmentation. It should be noted that the politics

category also produced one of the lowest gains from data augmentation. The improvement

yielded by DA∗SVM over SVM+LSA had a large range between 0.1 and 0.11 with a gain of 0.32

being a high outlier. The science category, a particularly low performer across the board,

experienced a 0.32 improvement in F1-score on the experimental model compared to the

SVM+LSA baseline and was this high outlier. The categories business and green only saw

negligible improvements in performance over SVM+LSA at 0.005 and 0.008 respectively, but

both categories performed better than the DA0SVM baseline. All other categories except those

previously mentioned saw a boost in F1-score performance between 0.1 and 0.11. These

findings are illustrated in Figure 6.23 and Figure 6.24.

Category DA0SVM SVM+LSA DA∗SVM
autos 0.5680 0.6355 0.7515
business 0.6450 0.7829 0.7914
entertainment 0.6610 0.7029 0.7920
green 0.3230 0.4251 0.4304
living 0.6770 0.7621 0.8374
overall 0.0460 0.0629 0.0212
politics 0.6320 0.6533 0.6363
science 0.4070 0.2449 0.5665
sports 0.5840 0.7085 0.7909
technology 0.7410 0.7792 0.8292
Mean 0.5284 0.5757 0.6447
Median 0.5840 0.6533 0.7515

Table 6.1: Per-class comparison of F1-scores between the baseline with no augmentation
(DA0SVM), a baseline using topics rather than bag-of-words (SVM+LSA), and the optimal data
augmentation configuration applied to SVM DA∗SVM.

6.6 Experiment 5 Conclusion

The purpose of this experiment was to determine if the optimal augmented model performed

better than a baseline model that used a lower dimensional representation of text rather than

bag-of-words. We fit a model using LSA vectors as features to an SVM and denoted this

model SVM+LSA. When we compared the models using F1-score, we saw that the optimal
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Figure 6.23: Per-class comparison of F1-scores between DA0SVM, SVM+LSA, and DA∗SVM.

Figure 6.24: Per-class difference in F1-score between a SVM+LSA baseline, and the optimal
data augmentation configuration applied to SVM DA∗.
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model, the SVM model evaluated on augmented testing data with ε = 0.3 performed better

than SVM+LSA in every category except overall and politics.

6.7 Chapter Summary

In this chapter, we answered five questions about the performance of the proposed data

augmentation algorithm:

1. How many terms should be used to augment a bag-of-words?

2. When should terms be selected for addition? In both the training and testing data,

only in the training data, or only in the testing or unseen data?

3. Do we need to use a probabilistic term acceptance step to correct strong within-text

dependencies?

4. Which classifier works better under this framework?

5. How does the best performing model under data augmentation perform better than an

SVM model using LSA vectors as features?

We concluded that ε = 0.3± 0.1 was an optimal choice for ε and that this coincides with

sampling a single highly influential term. This is a significant development because that single

term is selected probabilistically according to influence across the entire corpus using the

semantic space S and shows that the resampling strategy served its purpose. Once ε ≥ 0.5,

classifier performance decreased substantially and was often worse than the classifiers trained

on the original non-augmented data (DA0). The point at which term sampling occurred

also had a significant effect on classifier performance. While variation DA2 enjoyed being

the optimal variation in most cases, DA12 consistently performed the worst particularly as ε

increased. This is a very interesting finding because DA12 represents the status quo of machine

learning where both the training and testing sets undergo the same transformations and both

datasets follow the same distribution. It was the researcher’s hypothesis that using the data

124



augmentation method on only one of the sets may have introduced some additional signal

either into the classifier (under DA1), or into the unseen testing data (under DA2). In [65],

the researchers actually found that mismatched training and testing sets can outperform the

performance of matched training and testing sets. The proposed data augmentation method

appears to exhibit this behavior as DA1 and DA2 always or nearly always outperformed the

matched case DA12. The researcher also hypothesized that a probabilistic term acceptance

step may serve as a final sanity check when augmenting a bag-of-words to account for the

high level of dependency within each text and the resampling step by only including words if

they were a good “fit” for the text according to S. We saw that this augmentation strategy

had no significant effect on performance and that it sometimes decreased performance though

further research is required. We also looked at how sLDA and SVM performance compared

to each other. We observed that in most cases SVM performed better than sLDA. Finally,

we considered whether or not the optimal data augmentation configuration performed better

than an SVM trained on lower-dimensional features generated from LSA, and we found that

the data augmentation method performed better for all categories except two categories that

underperformed throughout this work, overall and politics.
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CHAPTER 7

Concluding Remarks

In this manuscript, the researcher addressed the challenge of classifying short texts into

classes, an idea that is important, yet is not frequently studied at a deep level as engineers

typically find workarounds or have their own way of augmenting text. This research proposed

a preprocessing step based on the bootstrap, a concept used frequently in statistics. The

researcher describes modifications to the original implementation of the bootstrap that allow

it to be applicable to text. We saw that this new method had success in improving classifier

performance on short texts, particularly when the original text is augmented to be about

30% larger and the preprocessing only occurs on unseen data and categorized by a classifier

that is trained on the original short texts. The researcher tested the new approach on two

models for text classification and found that while classification improved for both, the size

of the effect depended heavily on the type of classifier. The researcher considers this work

to be a “moonshot” – it addresses a large problem in natural language processing using a

method that has not been attempted in quite this way. For this reason, there is a lot of

room for further research and improvement.

7.1 Unexpected Results and Failed Experiments

The experiments in this manuscript all had a substantial contribution to the work at hand;

however, some of them yielded unexpected results that either negated the researcher’s hy-

pothesis or ended up pointing out something interesting that was not known a priori. The

researcher hypothesized that either doubling the length of the text, or increasing its length

by about 50% would yield the best results. It turns out that the best augmentation size was
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30%, but that this figure corresponded to sampling one highly relevant term from a semantic

space. This is still a significant finding because it suggests that using a semantic space to

augment short texts actually works. But this also calls into the question whether or not the

rest of the proposed data augmentation framework is in fact required, or if we can simply

stop once an arbitrary number of terms has been added to each text. Another unexpected

result was that augmenting only the unseen/test data improved performance considerably.

This finding suggests that practitioners can train classifiers on short texts, and then simply

augment unseen observations (such as in an online system) to generate more signal for better

performance. The result was unexpected because datasets are typically matched; that is,

the training set and the testing or unseen datasets are processed in the same way and this

fact is drilled over and over in the machine learning community though research suggests

that the contrary can be true. One particularly surprising finding to the researcher was that

sLDA performed rather poorly compared with SVM. While comparing these two classifiers

was not the purpose of this research, the researcher was quite surprised that using groups

of words in topics did not improve base performance. Instead, using plain old word counts

with plain old SVM performed much better. A pleasant surprise was that data augmentation

consistently performed significantly better than another oldie but goodie: an SVM model

trained with LSA vectors as features rather than words.

The researcher also performed some other experiments that are not discussed in this

manuscript because they did not contribute to this research in any meaningful way. Im-

proving Latent Dirichlet Allocation (LDA) was the original goal of this research, but exper-

imentation determined that there was no way to force LDA into a coherent and consistent

supervised context. Instead, Supervised Latent Dirichlet Allocation (sLDA) was used in

place of LDA.

Since the bootstrap is a simulation method, several iterations of augmentation were

performed on each text to construct a distribution of performance metrics to summarize

performance since every run would be different. With the number of iterations being large,

the researcher noticed that bagging or boosting may yield better results. The researcher

determined that adding this step would be counterproductive because the purpose of this
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research was to improve classification of short texts and not develop an ensemble method that

would require significant runtime and significant effort for the end user. The bootstrap was

already heavily modified for this research, and bagging would require further modifications

to work with text. It was unclear if these modifications would make sense and could in fact

be realized. The other option was boosting where we use incorrectly labeled observations

to train further classifiers, but the same concern over runtime and practicality made this

impractical for the time being.

7.2 Future Research

Due to the breadth of this research topic, there are a lot of areas where more can be done to

improve classification, or to expand the research to cover additional topic models, classifiers

and data types.

7.2.1 Nuances of the Proposed Data Augmentation Method

There were several areas where the researcher had to make an “engineering decision”26 about

minute details in the proposed algorithm. This manuscript proposes a new algorithm at a

macro level and evaluates it. Further research is required for micro level details. The choice

of the distance metrics used to build and query semantic space S is one such micro level

detail to investigate. Another detail that requires further research is the resampling scheme.

In this research, we used a systematic method of first identifying “target” terms that were

used to assist in drawing a new candidate term to add to the text. Could there be a simpler

more effective way of accomplishing the same goal?

It would also be useful to investigate whether or not the optimal ε discovered is global

and unique to this implementation of data augmentation, just unique to this particular

formulation of it, or if ε is actually a function dependent on other variables that were not

26 A phrase commonly used by Lixia Zhang, Professor of Computer Science, UCLA, to refer to a careful and
educated decision made to further a goal and not expected to have a measurable effect in a particular
context.
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studied. While the experimental variations studied in this research cover the full case of

training and testing set transformations, the final term acceptance step could potentially

yield performance gains using a metric other than pointwise mutual information (PMI) or

by experimenting with the other parameters used in the probability computation.

One disappointing finding to the researcher was how poor sLDA performed at baseline.

Using cross-validation, values were chosen for the number of topics K and the topic distri-

bution hyperparameter α. The values tested were based on what is common in the literature

and we saw that these parameters affected the baseline classifier significantly. The researcher

assumed one optimal K and one optimal α and it may be useful to perform this analysis again

with a more thorough experiment to choose these parameters and to vary these parameters

for each category rather than choosing them globally.

Finally, to accommodate for the high level of variation in the term sampling, we essentially

created 100 copies of each short text and augmented each of them with sampled terms. It is

unclear if multiple iterations are actually necessary, and if so, how many of them to perform.

For this research, the author decided to err on the side of controlling for variation though

it would be interesting to investigate the use of bagging or boosting to combine all of these

augmented bags-of-words, classifiers and predictions into one potentially superior estimate.

Additionally, it would be interesting to investigate if a boosting step, where each classifier’s

response is weighted according to some error measure, would improve performance over a

bagging step.

7.2.2 Additional Classifiers and Techniques

In this research, two machine learning techniques were tested: SVM and sLDA. The re-

searcher hypothesizes that other classical methods such as the random forest would be in-

teresting to study given that it already uses bagging. It would be interesting to see what the

effect on performance of having two bagging operations, one with the random forest and the

other from this data augmentation method would be. Another promising classical model is

Näıve Bayes. The researcher found that Naive Bayes can work very well on large corpora
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despite the violation of feature independence27.

In Chapter 2 we saw a plethora of topic models and many more are developed each year.

Most of these topic models fall into the Bayesian statistics or Bayesian non-parametrics

paradigm of methods and has a dedicated following of researchers. This research discussed

classical Latent Dirichlet Allocation (LDA) thoroughly as a basis for Bayesian topic models

and studied Supervised Latent Dirichlet Allocation (sLDA) as a target classifier used after

augmentation using the proposed method. Language is not independent and often appears

in hierarchies, in networks, and with correlated themes. It would be enlightening to apply

the proposed data augmentation method to these topic models. The challenge is that these

topic models are not necessarily supervised; they would need to be combined with some

supervised model to be able to serve as a classifier.

A paradigm that has seen a major rebirth in the past few years is the neural network.

Deep learning has seen success particularly in natural language processing for speech recog-

nition, machine translation, and parsing structures[103], as opposed to the bag-of-words

approach. The author of this manuscript believes that the neural network and Bayesian

paradigms accomplish very similar goals, but in different ways and that while one should

make an educated choice as to which one to use, the author chose to focus on topic models

out of research preference. It is unclear if this data augmentation method could be applied

directly to techniques based on deep learning but dropout[24] provides a promising first step.

One final aspect of the proposed data augmentation method to investigate is the method

used to construct the semantic space S. In this research we used Latent Semantic Analysis

(LSA). It would be interesting to investigate other distance-preserving methods such as

Non-negative Matrix Factorization (NMF)[162].

27 Sentiment Analysis with scikit-learn presented by Ryan Rosario at PyData Silicon Valley 2014 on
behalf of Facebook, Inc. https://www.youtube.com/watch?v=y3ZTKFZ-1QQ&t=1s
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7.2.3 Highly Unstructured Text

As mentioned in Chapter 1, the researcher originally proposed to use tweets for this research.

Tweets extensively complicate research and are an example of a wider class of unstructured

text. For topic classification, tweets may not have any signal related to the set of topics to

be classified because they are about a theme of no consequence to the research. Unlike blog

post titles, tweets often do not carry with them any sort of context on their own.

One can append some sort of context with the text by processing the tweets of the user in

question, or considering a neighborhood of tweets that surround a particular tweet in time,

but even this has its own challenges that the researcher believes to depend on the particular

user’s frequency of authoring tweets and the evolution of the topics he or she discusses.

Another way to append context would be to process the tweets of all other users at the

same time for time-based insights, or all other users in the same location at the same time

for space-time insights. As an example, consider an earthquake that occurs at a particular

time in a small town in California. Several tweets from users in the same location and in

the same timeframe may tweet interjections such as yikes! or that was scary!. Topic

classification would not be able to do much with such tweets except place them in a topic

associated with fear. Other users in the region may author tweets containing conjugations

of the word shake that can be used to add context the tweets in the region. It would be

interesting to study how well this method works in conjunction with data augmentation and

to determine if applying both yields any interesting improvements.
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APPENDIX A

Guide to Notation Used in Chapters 4 and 5

Terms
i An index over terms.
j An index over a second term, i 6= j.

ti, tj Casual reference to two different terms.
ti·, tj· Refers to two terms in the lexicon globally in the corpus without regard to docu-

ment.
tim Refers to term i within document dm.
t′im Some term selected from parallel document d′m based on tim.
t′i· Refers to a term selected from the lexicon without regard to document, based on

ti·.

Table A.1: Notation used to reference terms.

Documents
l An index representing an iteration of data augmentation, used with d∗.
m An index over documents.
n An index over a second document, m 6= n.

d Casual reference to some short text document.
d∗ Casual reference to some augmented document.
dm Refers to the mth short text document in corpus D.
d∗ml Refers to the augmented version of document dm after iteration l.
d′m Some document selected based on similarity to dm.

Table A.2: Notation used to reference documents.

Corpus
l An index representing an iteration of data augmentation, used with D∗

D The original corpus of short texts. There no subscript as it remains fixed.
D∗ The collection of all augmented corpora from all iterations.
D∗l The corpus of augmented documents generated from iteration l.

Table A.3: Notation used to reference the corpus.
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Semantic Spaces
S General; refers to the set of semantic spaces {St,Sd}.
St The semantic space associated with terms (a matrix).
Sd The semantic space associated with documents (a matrix).
Sti , Stj Singular vectors for terms ti and tj respectively.
Sdm , Sdn Singular vectors for documents dm and dn respectively.
δd A cosine similarity matrix comparing all documents in D.
δt A cosine similarity matrix comparing all terms in V .
δd(dm, dn) Cosine similarity between two documents dm and dn.
δd(d

′
m, dm) Cosine similarity between dm and the parallel document d′m.

δd(dm, ·) Vector of cosine similarities between dm and all other documents in D.
δt(ti·, tj·) Global cosine similarity between terms ti and tj without regard for document.

Table A.4: Notation related to the semantic spaces.

Sampling Distributions
P (tim|dm, X·,m) Probability of selecting a particular term in a document, tim according

to TF-IDF.
P (d′m|dm, δd) Probability of selecting a parallel document d′m conditioned on simi-

larity to dm.
P (t′im|tim, d′m, δt) Probability of selecting an arbitrary term t′im from parallel document

d′m given its similarity to tim.
P (t′i·|ti·, D, δt) Probability of selecting some term t′ given its similarity to t based on

similarity. In this case, no parallel document is involved, only cosine
similarity between terms.

P (dm → d∗ml|t′im) Probability of transitioning from short document d to augmented doc-
ument d∗ via adding term t′im.

Table A.5: Notation related to sampling probabilities.

Latent Semantic Analysis (LSA)
K A variable holding number of dimensions retained from truncated SVD.
k A particular instance of K.
V The vocabulary/lexicon of D.
X The term-document matrix induced by D.
Xk The lower k-dimensional approximation of X.
Xim A TF-IDF score, element of the term-document matrix for term ti in document dm.
Dk The singular vectors associated with documents.
Σk A square diagonal matrix of singular values.
WT

k The singular vectors associated with terms/words.

Table A.6: Notation related to the the construction of the semantic spaces with Latent
Semantic Analysis (LSA).
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Latent Dirichlet Allocation (LDA / sLDA)
k An index over topics.

K Number of latent topics used in the model.
α A hyperparameter of the LDA model.

Table A.7: Notation related to Latent Dirichlet Allocation (LDA).

Support Vector Machines
C A hyperparameter of the SVM model selected by grid search.

Table A.8: Notation related to the SVM model.

Experiments
ε The augmentation rate. The relative increase in document size.
I(dm), I(d∗ml) The mutual information of documents dm and d′ml respectively.

Table A.9: Notation related to experiments.
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APPENDIX B

Per-class Performance for Benchmark Models

B.1 Per-class Performance for Baseline SVM
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Accuracy 0.984 0.948 0.859 0.980 0.850 0.975 0.944 0.972 0.867 0.905
True Positive Rate/Recall 0.507 0.635 0.675 0.254 0.717 0.021 0.630 0.321 0.654 0.704
True Negative Rate 0.994 0.973 0.906 0.994 0.888 0.999 0.970 0.992 0.903 0.952
False Positive Rate 0.006 0.027 0.094 0.006 0.112 0.001 0.030 0.008 0.097 0.048
False Negative Rate 0.493 0.365 0.325 0.746 0.283 0.979 0.370 0.679 0.346 0.296
Precision 0.649 0.654 0.649 0.484 0.643 0.309 0.625 0.561 0.526 0.774
F1 Score 0.569 0.644 0.662 0.333 0.678 0.040 0.627 0.408 0.583 0.737

Table B.1: Per-class metrics for SVM with L2 penalty and TF-IDF features.
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Accuracy 0.983 0.948 0.859 0.979 0.852 0.974 0.944 0.971 0.867 0.906
True Positive Rate/Recall 0.513 0.641 0.671 0.255 0.710 0.025 0.639 0.332 0.657 0.705
True Negative Rate 0.994 0.972 0.908 0.993 0.891 0.998 0.969 0.991 0.902 0.954
False Positive Rate 0.006 0.028 0.092 0.007 0.109 0.002 0.031 0.009 0.098 0.046
False Negative Rate 0.487 0.359 0.329 0.745 0.290 0.975 0.361 0.668 0.343 0.295
Precision 0.634 0.649 0.651 0.439 0.647 0.234 0.624 0.526 0.526 0.781
F1 Score 0.567 0.645 0.661 0.323 0.677 0.046 0.631 0.407 0.584 0.741

Table B.2: Per-class metrics for SVM with L2 penalty and word presence features.
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Accuracy 0.983 0.948 0.859 0.979 0.851 0.974 0.945 0.971 0.867 0.906
True Positive Rate/Recall 0.513 0.641 0.671 0.256 0.710 0.025 0.639 0.332 0.657 0.705
True Negative Rate 0.994 0.972 0.908 0.993 0.891 0.998 0.969 0.991 0.902 0.953
False Positive Rate 0.006 0.028 0.092 0.007 0.109 0.002 0.031 0.009 0.098 0.047
False Negative Rate 0.487 0.359 0.329 0.744 0.290 0.975 0.361 0.668 0.343 0.295
Precision 0.635 0.649 0.652 0.438 0.647 0.234 0.625 0.526 0.526 0.781
F1 Score 0.568 0.645 0.661 0.323 0.677 0.046 0.632 0.407 0.584 0.741

Table B.3: Per-class metrics for SVM with L2 penalty and word count features.
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Accuracy 0.983 0.948 0.859 0.979 0.851 0.974 0.945 0.971 0.867 0.906
True Positive Rate/Recall 0.513 0.641 0.671 0.256 0.710 0.025 0.639 0.332 0.657 0.705
True Negative Rate 0.994 0.972 0.908 0.993 0.891 0.998 0.969 0.991 0.902 0.953
False Positive Rate 0.006 0.028 0.092 0.007 0.109 0.002 0.031 0.009 0.098 0.047
False Negative Rate 0.487 0.359 0.329 0.744 0.290 0.975 0.361 0.668 0.343 0.295
Precision 0.635 0.649 0.652 0.438 0.647 0.234 0.625 0.526 0.526 0.781
F1 Score 0.568 0.645 0.661 0.323 0.677 0.046 0.632 0.407 0.584 0.741

Table B.4: Per-class metrics for SVM with L2 penalty and term frequency features.

Metric / Class a
u
t
o
s

b
u
s
i
n
e
s
s

e
n
t
e
r
t
a
i
n
m
e
n
t

g
r
e
e
n

l
i
v
i
n
g

o
v
e
r
a
l
l

p
o
l
i
t
i
c
s

s
c
i
e
n
c
e

s
p
o
r
t
s

t
e
c
h
n
o
l
o
g
y

Accuracy 0.984 0.946 0.858 0.979 0.850 0.975 0.945 0.972 0.866 0.903
True Positive Rate/Recall 0.521 0.635 0.668 0.231 0.716 0.019 0.619 0.308 0.654 0.702
True Negative Rate 0.994 0.971 0.907 0.995 0.888 0.999 0.971 0.992 0.901 0.950
False Positive Rate 0.006 0.029 0.093 0.005 0.112 0.001 0.029 0.008 0.099 0.050
False Negative Rate 0.479 0.365 0.332 0.769 0.284 0.981 0.381 0.692 0.346 0.298
Precision 0.647 0.635 0.648 0.473 0.642 0.243 0.629 0.558 0.522 0.768
F1 Score 0.577 0.635 0.658 0.310 0.677 0.035 0.624 0.397 0.581 0.734

Table B.5: Per-class metrics for SVM with L1 penalty and TF-IDF features.
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Accuracy 0.983 0.946 0.860 0.979 0.852 0.974 0.944 0.971 0.865 0.905
True Positive Rate/Recall 0.526 0.644 0.664 0.244 0.709 0.024 0.626 0.326 0.660 0.702
True Negative Rate 0.993 0.970 0.911 0.994 0.892 0.998 0.969 0.990 0.899 0.952
False Positive Rate 0.007 0.030 0.089 0.006 0.108 0.002 0.031 0.010 0.101 0.048
False Negative Rate 0.474 0.356 0.336 0.756 0.291 0.976 0.374 0.674 0.340 0.298
Precision 0.629 0.630 0.657 0.442 0.649 0.227 0.621 0.511 0.520 0.776
F1 Score 0.573 0.637 0.660 0.315 0.677 0.043 0.623 0.398 0.581 0.737

Table B.6: Per-class metrics for SVM with L1 penalty and word presence features.
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Accuracy 0.983 0.946 0.859 0.979 0.852 0.975 0.943 0.970 0.865 0.905
True Positive Rate/Recall 0.525 0.643 0.664 0.246 0.709 0.022 0.627 0.325 0.659 0.701
True Negative Rate 0.993 0.970 0.910 0.994 0.892 0.998 0.969 0.990 0.900 0.952
False Positive Rate 0.007 0.030 0.090 0.006 0.108 0.002 0.031 0.010 0.100 0.048
False Negative Rate 0.475 0.357 0.336 0.754 0.291 0.978 0.373 0.675 0.341 0.299
Precision 0.626 0.630 0.654 0.449 0.649 0.234 0.619 0.509 0.521 0.776
F1 Score 0.571 0.637 0.659 0.318 0.677 0.040 0.623 0.397 0.582 0.737

Table B.7: Per-class metrics for SVM with L1 penalty and word count features.
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Accuracy 0.983 0.946 0.860 0.979 0.852 0.974 0.943 0.971 0.865 0.905
True Positive Rate/Recall 0.525 0.644 0.663 0.253 0.709 0.025 0.627 0.326 0.659 0.702
True Negative Rate 0.993 0.970 0.911 0.993 0.893 0.998 0.969 0.990 0.900 0.953
False Positive Rate 0.007 0.030 0.089 0.007 0.107 0.002 0.031 0.010 0.100 0.047
False Negative Rate 0.475 0.356 0.337 0.747 0.291 0.975 0.373 0.674 0.341 0.298
Precision 0.626 0.632 0.656 0.439 0.649 0.232 0.616 0.512 0.521 0.777
F1 Score 0.571 0.638 0.660 0.321 0.678 0.045 0.622 0.398 0.582 0.738

Table B.8: Per-class metrics for SVM with L1 penalty and term frequency features.
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Accuracy 0.984 0.948 0.858 0.978 0.850 0.975 0.944 0.972 0.867 0.906
True Positive Rate/Recall 0.498 0.637 0.676 0.251 0.708 0.025 0.631 0.327 0.658 0.704
True Negative Rate 0.994 0.973 0.905 0.993 0.890 0.998 0.969 0.991 0.902 0.953
False Positive Rate 0.006 0.027 0.095 0.007 0.110 0.002 0.031 0.009 0.098 0.047
False Negative Rate 0.502 0.363 0.324 0.749 0.292 0.975 0.369 0.673 0.342 0.296
Precision 0.643 0.655 0.648 0.433 0.644 0.242 0.625 0.538 0.526 0.780
F1 Score 0.561 0.646 0.662 0.318 0.675 0.045 0.628 0.407 0.585 0.740

Table B.9: Per-class metrics for logistic regression with TF-IDF features.
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Accuracy 0.983 0.948 0.857 0.979 0.849 0.975 0.944 0.971 0.867 0.904
True Positive Rate/Recall 0.491 0.632 0.678 0.249 0.710 0.023 0.623 0.319 0.650 0.701
True Negative Rate 0.994 0.973 0.904 0.994 0.888 0.998 0.969 0.991 0.902 0.952
False Positive Rate 0.006 0.027 0.096 0.006 0.112 0.002 0.031 0.009 0.098 0.048
False Negative Rate 0.509 0.368 0.322 0.751 0.290 0.977 0.377 0.681 0.350 0.299
Precision 0.643 0.655 0.644 0.449 0.641 0.248 0.621 0.534 0.525 0.775
F1 Score 0.557 0.643 0.661 0.320 0.673 0.041 0.622 0.400 0.581 0.736

Table B.10: Per-class metrics for logistic regression with word presence features.
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Accuracy 0.983 0.948 0.857 0.979 0.849 0.975 0.944 0.971 0.867 0.904
True Positive Rate/Recall 0.491 0.632 0.678 0.250 0.710 0.023 0.623 0.320 0.651 0.701
True Negative Rate 0.994 0.973 0.904 0.994 0.888 0.998 0.970 0.991 0.902 0.952
False Positive Rate 0.006 0.027 0.096 0.006 0.112 0.002 0.030 0.009 0.098 0.048
False Negative Rate 0.509 0.368 0.322 0.750 0.290 0.977 0.377 0.680 0.349 0.299
Precision 0.643 0.655 0.644 0.450 0.640 0.248 0.622 0.535 0.525 0.775
F1 Score 0.557 0.643 0.661 0.321 0.673 0.041 0.622 0.400 0.581 0.736

Table B.11: Per-class metrics for logistic regression with word count features.
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Accuracy 0.983 0.948 0.857 0.979 0.849 0.975 0.944 0.971 0.867 0.904
True Positive Rate/Recall 0.491 0.632 0.678 0.250 0.710 0.023 0.623 0.320 0.651 0.701
True Negative Rate 0.994 0.973 0.904 0.994 0.888 0.998 0.970 0.991 0.902 0.952
False Positive Rate 0.006 0.027 0.096 0.006 0.112 0.002 0.030 0.009 0.098 0.048
False Negative Rate 0.509 0.368 0.322 0.750 0.290 0.977 0.377 0.680 0.349 0.299
Precision 0.643 0.655 0.644 0.450 0.640 0.248 0.622 0.535 0.525 0.775
F1 Score 0.557 0.643 0.661 0.321 0.673 0.041 0.622 0.400 0.581 0.736

Table B.12: Per-class metrics for logistic regression with term frequency features.

B.2 Per-class Performance Metrics for Baseline sLDA

Metric α a
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Accuracy 0.2 0.775 0.817 0.682 0.758 0.782 0.640 0.667 0.610 0.797 0.855
False Positive Rate 0.2 0.225 0.183 0.339 0.242 0.220 0.360 0.339 0.390 0.188 0.143
False Negative Rate 0.2 0.225 0.177 0.245 0.246 0.213 0.361 0.226 0.375 0.284 0.167
True Negative Rate 0.2 0.775 0.817 0.662 0.758 0.780 0.640 0.661 0.610 0.813 0.858
Precision 0.2 0.091 0.316 0.385 0.070 0.563 0.037 0.116 0.055 0.418 0.400
Recall (True Positive Rate) 0.2 0.775 0.823 0.755 0.754 0.787 0.639 0.774 0.625 0.716 0.833
F1 Score 0.2 0.273 0.504 0.510 0.171 0.658 0.081 0.269 0.103 0.581 0.610
AUC Score 0.2 0.827 0.874 0.767 0.815 0.850 0.683 0.775 0.647 0.811 0.903
Accuracy 1.0 0.765 0.832 0.755 0.651 0.748 0.592 0.660 0.649 0.751 0.799
False Positive Rate 1.0 0.235 0.166 0.243 0.350 0.261 0.408 0.346 0.351 0.239 0.203
False Negative Rate 1.0 0.232 0.191 0.254 0.293 0.228 0.402 0.245 0.368 0.308 0.187
True Negative Rate 1.0 0.765 0.834 0.757 0.650 0.739 0.592 0.655 0.649 0.762 0.798
Precision 1.0 0.087 0.334 0.463 0.047 0.515 0.031 0.112 0.062 0.353 0.314
Recall (True Positive Rate) 1.0 0.768 0.809 0.746 0.707 0.772 0.598 0.755 0.632 0.692 0.814
F1 Score 1.0 0.290 0.543 0.577 0.120 0.618 0.061 0.221 0.147 0.512 0.537
AUC Score 1.0 0.841 0.887 0.801 0.728 0.822 0.625 0.764 0.693 0.793 0.875

Table B.13: sLDA experimental results with K = 5 topics.
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Accuracy 0.1 0.782 0.804 0.753 0.747 0.744 0.643 0.726 0.679 0.770 0.832
False Positive Rate 0.1 0.218 0.194 0.250 0.252 0.263 0.356 0.272 0.320 0.218 0.168
False Negative Rate 0.1 0.232 0.222 0.236 0.311 0.236 0.387 0.307 0.349 0.298 0.175
True Negative Rate 0.1 0.782 0.806 0.750 0.748 0.737 0.644 0.728 0.680 0.782 0.833
Precision 0.1 0.093 0.292 0.461 0.062 0.511 0.036 0.128 0.069 0.377 0.360
Recall (True Positive Rate) 0.1 0.768 0.778 0.764 0.689 0.764 0.613 0.693 0.651 0.703 0.825
F1 Score 0.1 0.279 0.460 0.581 0.164 0.612 0.095 0.268 0.163 0.532 0.585
AUC Score 0.1 0.826 0.858 0.814 0.781 0.826 0.685 0.787 0.724 0.806 0.898
Accuracy 1.0 0.794 0.800 0.748 0.690 0.744 0.600 0.741 0.691 0.761 0.822
False Positive Rate 1.0 0.206 0.199 0.251 0.310 0.256 0.399 0.259 0.309 0.230 0.175
False Negative Rate 1.0 0.226 0.214 0.254 0.341 0.255 0.424 0.257 0.320 0.290 0.211
True Negative Rate 1.0 0.794 0.801 0.749 0.690 0.744 0.601 0.741 0.691 0.770 0.826
Precision 1.0 0.098 0.289 0.455 0.049 0.511 0.030 0.142 0.075 0.367 0.340
Recall (True Positive Rate) 1.0 0.774 0.787 0.746 0.659 0.745 0.576 0.743 0.680 0.711 0.789
F1 Score 1.0 0.366 0.499 0.570 0.134 0.609 0.064 0.305 0.242 0.529 0.544
AUC Score 1.0 0.855 0.870 0.809 0.739 0.823 0.631 0.816 0.749 0.809 0.879

Table B.14: sLDA experimental results with K = 10 topics.
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Accuracy .02 0.808 0.833 0.756 0.682 0.767 0.616 0.796 0.646 0.747 0.840
False Positive Rate .02 0.191 0.163 0.244 0.319 0.229 0.384 0.201 0.357 0.245 0.159
False Negative Rate .02 0.219 0.198 0.243 0.275 0.242 0.386 0.260 0.282 0.297 0.169
True Negative Rate .02 0.809 0.837 0.756 0.681 0.771 0.616 0.799 0.643 0.755 0.841
Precision .02 0.106 0.335 0.465 0.052 0.543 0.034 0.175 0.069 0.350 0.373
Recall (True Positive Rate) .02 0.781 0.802 0.757 0.725 0.758 0.614 0.740 0.718 0.703 0.832
F1 Score .02 0.422 0.585 0.586 0.181 0.635 0.092 0.419 0.220 0.525 0.617
AUC Score .02 0.871 0.891 0.829 0.775 0.843 0.661 0.850 0.749 0.822 0.904
Accuracy 1.0 0.849 0.830 0.743 0.678 0.774 0.575 0.742 0.733 0.770 0.846
False Positive Rate 1.0 0.149 0.167 0.254 0.323 0.216 0.426 0.259 0.265 0.217 0.151
False Negative Rate 1.0 0.237 0.192 0.265 0.313 0.255 0.408 0.248 0.337 0.298 0.179
True Negative Rate 1.0 0.851 0.833 0.746 0.677 0.784 0.574 0.741 0.735 0.783 0.849
Precision 1.0 0.129 0.331 0.448 0.049 0.554 0.029 0.143 0.084 0.378 0.383
Recall (True Positive Rate) 1.0 0.763 0.808 0.735 0.687 0.745 0.592 0.752 0.663 0.702 0.821
F1 Score 1.0 0.505 0.584 0.566 0.201 0.639 0.060 0.399 0.339 0.539 0.624
AUC Score 1.0 0.874 0.890 0.815 0.753 0.837 0.613 0.820 0.764 0.811 0.901

Table B.15: sLDA experimental results with K = 50 topics.
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Accuracy .01 0.799 0.813 0.731 0.690 0.752 0.585 0.755 0.627 0.759 0.841
False Positive Rate .01 0.200 0.185 0.272 0.311 0.249 0.416 0.246 0.375 0.231 0.155
False Negative Rate .01 0.228 0.209 0.257 0.298 0.246 0.368 0.229 0.326 0.294 0.189
True Negative Rate .01 0.800 0.815 0.728 0.689 0.751 0.584 0.754 0.625 0.769 0.845
Precision .01 0.100 0.305 0.433 0.052 0.522 0.032 0.153 0.062 0.365 0.374
Recall (True Positive Rate) .01 0.772 0.791 0.743 0.702 0.754 0.632 0.771 0.674 0.707 0.811
F1 Score .01 0.424 0.550 0.558 0.184 0.619 0.090 0.411 0.220 0.522 0.607
AUC Score .01 0.847 0.876 0.807 0.767 0.833 0.655 0.840 0.721 0.812 0.896
Accuracy 1.0 0.852 0.817 0.743 0.705 0.756 0.566 0.737 0.730 0.751 0.840
False Positive Rate 1.0 0.145 0.180 0.251 0.294 0.245 0.434 0.262 0.266 0.238 0.158
False Negative Rate 1.0 0.253 0.212 0.278 0.352 0.242 0.448 0.292 0.391 0.303 0.179
True Negative Rate 1.0 0.855 0.820 0.749 0.706 0.755 0.566 0.738 0.734 0.762 0.842
Precision 1.0 0.129 0.310 0.446 0.051 0.527 0.027 0.135 0.077 0.355 0.373
Recall (True Positive Rate) 1.0 0.747 0.788 0.722 0.648 0.758 0.552 0.708 0.609 0.697 0.821
F1 Score 1.0 0.545 0.588 0.560 0.241 0.626 0.055 0.394 0.256 0.526 0.619
AUC Score 1.0 0.860 0.874 0.813 0.755 0.827 0.586 0.799 0.723 0.795 0.896

Table B.16: sLDA experimental results with K = 100 topics.
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APPENDIX C

Ancillary Plots

C.1 sLDA Benchmark Experiments

C.1.1 Performance for All Categories at Various K and α
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C.1.2 Performance for each Category at Various K and α = 1

147



148



149



150



151



152



153



154



155



156



C.1.3 Performance for each Category at Various K and α = 1
K
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APPENDIX D

Relevant Code

Relevant code is available at

https://github.com/RyanRosario/dissertationcode.
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