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The Brutal Truth

We are here because we love R. Despite our enthusiasm, R has two
major limitations, and some people may have a longer list.

1 Regardless of the number of cores on your CPU, R will only
use 1 on a default build.

2 R reads data into memory by default. Other packages (SAS
particularly) and programming languages can read data from
files on demand.

Easy to exhaust RAM by storing unnecessary data.

The OS and system architecture can only access 232

10242 = 4GB
of physical memory on a 32 bit system, but typically R will
throw an exception at 2GB.
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The Brutal Truth

There are a couple of solutions:

1 Build from source and use special build options for 64 bit and
a parallelization toolkit.

2 Use purely another language like C, FORTRAN, or a JVM
based language (Java, Clojure/Incanter, Scala etc.)

3 Interface R with C and FORTRAN.

4 Let clever developers solve these problems for you!

We will discuss number 4 above.
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The Agenda

This talk will survey a few HPC packages in R. We will focus on
four areas of HPC:

1 Explicit Parallelism: the user controls the parallelization.

2 Implicit Parallelism: the system abstracts it away.

3 Big Data and Distributed Computing: using resources on
a cluster of machines for data processing.
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Disclaimer

1 There is a ton of material here. I provide a lot of slides for
your reference.

2 Some of these methods will not work in RStudio, even with R
2.14.

3 I intend for this talk to be more high-level than my previous
talk.

4 All experiments were run on two different systems for
non-scientific comparison:

Dual Intel Xeon E5600 2.4GHz (2x6-core, 2011), 96GB DDR3
running Ubuntu 10.04LTS (Lucid Lynx) [12 Core, 24 threads]
Quad and 8-core MacPro (late 2007, early 2009) with 4GB
DDR3 running Mac OS X 10.6 (Snow Leopard). (For original
presentation)
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What is Parallelism?

In computer science, parallelism is performing two or more tasks
simultaneously (at the exact same time). That is, two or more
processes work in parallel.
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What is Parallelism?

The following are NOT examples of parallelism:

1 Having multiple programs open at the same time and doing
their own processing.

2 Analogy: Watching two television shows on two different
televisions at the same time.

(In the above, there is an implicit context switch between the
processes.)

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



What is Parallelism?

The following are examples of parallelism:

1 Displaying a progress bar in a GUI while running a Gibbs
sampler.

2 Analogy: Rubbing your stomach and patting your head at
the same time.

(No implicit context switch... actions are simultaneous)

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



Parallelism

Parallelism means running several computations at the exact same time and
taking advantage of multiple cores or CPUs on a single system, or CPUs on
other systems (distributed). This makes computations finish faster, and the
user gets more bang for the buck. “We have the cores, let’s use them!”

R has several packages for parallelism. We will talk about the following:

1 parallel, part of R 2.14 base.

2 RHadoop, by Revolution Computing.

3 Very quick mention of GPUs.

4 foreach by Revolution Computing is provided in an appendix.

There are many others, but the above are the easiest to use and should be
useful in most situations.
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Parallelism in R

The R community has developed several (and I do mean several)
packages to take advantage of parallelism.

Many of these packages are simply wrappers around one or multiple
other parallelism packages forming a complex and sometimes
confusing web of packages. parallel attempts to eliminate some
of this by wrapping snow and multicore into a nice bundle.
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Motivation

“R itself does not allow parallel execution. There are some existing
solutions... However, these solutions require the user to setup and
manage the cluster on his own and therefore deeper knowledge
about cluster computing is needed. From our experience this is a
barrier for lots of R users, who basically use it as a tool for
statistical computing.”

From The R Journal Vol. 1/1, May 2009
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The Swiss Cheese Phenomenon

Another barrier (at least for me) is
the fact that so many of these
packages rely on one another.
Piling all of these packages on top
of each other like swiss cheese, the
user is bound to fall through a hole,
if everything aligns correctly (or
incorrectly...).

(I thought I coined this myself...but

there really is a swiss cheese model

directly related to this.)
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Some Basic Terminology

A CPU is the main processing unit in a system. Sometimes CPU
refers to the processor, sometimes it refers to a core on a
processor, it depends on the author. Today, most desktops have
one processor with between one two and four six cores. Some have
two processors, each with one or more cores.

A cluster is a set of machines that are all interconnected and share
resources as if they were one giant computer.

The master is the system that controls the cluster, and a slave or
worker is a machine that performs computations and responds to
the master’s requests.
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Some Basic Terminology

Since this is Los Angeles, here is fun fact:

In Los Angeles, officials pointed out that such terms as ”master”
and ”slave” are unacceptable and offensive, and equipment
manufacturers were asked not to use these terms. Some
manufacturers changed the wording to primary / secondary
(Source: CNN).

I apologize if I offend anyone, but I use slave and worker

interchangeably depending on the documentation’s terminology.
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How Many Cores do I Have?

library(parallel)

mc <- detectCores()

mc

[1] 24

As the author mentions, this is a slippery slope and depends on not
only your CPUs, but also the operating system.

Windows will report the number of logical CPUs, which may
exceed the number of physical cores.

The OS may (not) take hyper-threading into account.
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parallel

Explicit Parallelism in R

snowfall

snow

Rmpi nws sockets

foreach
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parallel

The parallel Package

A first release of the new base parallel package is distributed
with R 2.14:

1 modified version of snow.

2 multicore (except on Windows)
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parallel

snow Functionality: Simple Network of Workstations

Provides an interface to several parallelization and clustering
packages:

1 MPI: Message Passing Interface, via Rmpi

2 NWS: NetWork Spaces via nws

3 PVM: Parallel Virtual Machine

4 Sockets via the operating system

All of these systems allow intrasystem communication for working
with multiple CPUs, or intersystem communication for working
with a cluster.
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parallel

snow Functionality: Simple Network of Workstations

Note: The first version of the modified snow functionality does
not support NWS, PVM or MPI clusters.

However...

The vignette specifies that NWS, PVM and MPI should work.
YMMV...
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parallel

Creating snow-like Clusters

parallel provides two ways to create snow-like clusters:

1 makePSOCKcluster uses Rscript to launch several instances
of R either locally, or on other machines.

2 makeForkCluster uses the OS level fork call to create
multiple identical R processes on the same machine with a
copy of the master workspace.

3 makeCluster creates PVM, MPI or NWS clusters by calling
snow. YMMV. (By default, uses sockets).
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parallel

parallel: A Bit of snow

Major functions in API.

1 makeCluster sets up the cluster and initializes its use with R
and returns a cluster object. (also, makePSOCKcluster,
makeForkCluster.)

2 clusterExport takes a character vector or object names and
exports the objects corresponding to the names to the cluster.

3 clusterEvalQ performs some operation (e.g. command,
loading library, function call etc.) on the cluster and returns
the results as a list.

There are several others for you to peruse at your leisure. Also,
some of the them make more sense in multicore and are not
hyped in the documentation.

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



parallel

snow: Simple Network of Workstations

A couple of other functions worth seeing.

1 parRapply a parallel row apply.

2 parLapply We will return to this one...

3 Despite its obvious name, parApply is rarely used.
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parallel

An Example: Random Subset Cross Validation (Spam
Detection)

1 #Common setup

2 library(rpart)

3 library(parallel)

4

5 spam.data <- read.table("spam.data", header=FALSE , sep=’

’)

6 ...

7 fold <- function () {

8 train <- sample(c(0,1), prob=c(0.1, 0.9), replace=TRUE ,

size=nrow(spam.data))

9 trained.tree <- rpart(SPAM ~ ., data=spam.data[train ==

1, ])

10 test <- predict(trained.tree , spam.data[train == 0, ])

11 predictions <- ifelse(test > 0.5, 1, 0)

12 true <- spam.data$SPAM[train == 0]

13 sum(true == predictions) / length(true)

14 }
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parallel

An Example: Random Subset Cross Validation (Spam
Detection)

Serial Train the model on a random 90% of the data, test on the
other 10%. Measure the test error. Do this 10 times.

1 res <- vector(length =10)

2 system.time({

3 for (i in 1:10) {

4 res[i] <- fold()

5 }

6 })

7

8 # user system elapsed

9 # 12.450 0.040 12.514
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parallel

An Example: Random Subset Cross Validation (Spam
Detection)

Explicit Parallelism

1 system.time({

2 cl <- makePSOCKcluster (10)

3 clusterExport(cl , c("spam.data","fold"))

4 junk <-clusterEvalQ(cl , library(rpart))

5 clusterSetRNGStream(cl , 123)

6 res <- clusterEvalQ(cl , fold())

7 stopCluster(cl)

8 })

9

10 # user system elapsed

11 # 0.35 0.08 4.88

Which is faster, but not as fast as it should be... Why not?
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parallel

A Snake in the Grass

What gives?

Setting up slaves, copying data and code is very costly
performance-wise, especially if they must be copied across a
network (such as in a cluster). Of course, the method also matters.

General Rule (in Ryan’s words):
“Only parallelize with a certain method if the cost of computation
is (much) greater than the cost of setting up the framework.”
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parallel

A Snake in the Grass

Since
T (CV) ≮≮ T (cluster setup)

so we do not achieve the expected boost in performance.

So, is parallelization always a good idea? NO!
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parallel

An Example: Random Subset Cross Validation (Spam
Detection)

Another important fact worth noting: forking n processes is faster
than creating n socket connections.

Using makeForkCluster

#Entire process (FORK)

# user system elapsed

# 0.280 0.050 3.299

Using makePSOCKcluster

#Entire process (PSOCK)

# user system elapsed

# 0.35 0.08 4.88

Rule of Thumb: Fork on local host, sockets for distributed
clusters.Ryan R. Rosario
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parLapply

There is another (more useful) way to use the cluster by using
parLapply which has the usual apply syntax but runs jobs across
a cluster.

parLapply(cl, X, fun, ...)

1 cl is the cluster object.

2 X is some data or parameters to pass to the analysis function
fun.

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



parallel

10-fold Cross Validation with parLapply

A new function for test/train on a particular fold. First randomly
assign data to folds.

1 fold <- sample(seq(1, 10), size=nrow(spam.data), replace=

TRUE)

2 fold.cv <- function(i) {

3 trainset <- spam.data[fold == i, ]

4 testset <- spam.data[fold != i, ]

5 trained.tree <- rpart(SPAM ~ ., data=trainset)

6 test <- predict(trained.tree , testset)

7 predictions <- ifelse(test > 0.5, 1, 0)

8 true <- testset$SPAM

9 sum(true == predictions) / length(true)

10 }
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parallel

10-fold Cross Validation with parLapply

1 system.time({

2 cl <- makeForkCluster (24)

3 clusterSetRNGStream(cl, 123)

4 res <- do.call(c, parLapply(cl, seq_len(mc), fold.cv))

5 stopCluster(cl)

6 })

7 # user system elapsed

8 # 0.010 0.010 1.238

Note: since we fork the current process, no need to export
variables to the cluster!
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parallel

Why Not use x for Explicit Parallel Computing?

Borrowed from State-of-the-art in Parallel Computing with R, from Journal of

Statistical Software August 2009, Volume 31, Issue 1.
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parallel

Implicit Parallelism

Unlike explicit parallelism where the user controls (and can mess
up) most of the cluster settings, with implicit parallelism most of
the messy legwork in setting up the system and distributing data is
abstracted away.

Most users probably prefer implicit parallelism.
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parallel

parallel’s multicore Functionality

Disclaimer: No adaptation of multicore is distributed for
Windows currently (ever?). Unlike snow, the parallel version of
multicore remains almost entirely intact.
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parallel

parallel’s multicore Functionality

multicore provides functions for parallel execution of R code on
systems with multiple cores or multiple CPUs.

Important! Unlike other parallelization packages, all subjobs
started by multicore share the same state!

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



parallel

parallel’s multicore Functionality

The main functions in multicore are

mclapply, a parallel version of lapply.

mcparallel, do something in a separate process.

mccollect, get the results from call(s) to parallel
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parallel

multicore: mclapply

mclapply is a parallel version of lapply. Works similar to lapply, but has
some extra parameters:

mclapply(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE,

mc.silent = FALSE, mc.cores = getOption("cores"))

1 mc.preschedule=TRUE controls how data are allocated to jobs/cores.

2 mc.cores controls the maximum number of processes to spawn.

3 mc.silent=TRUE suppresses standard output (informational messages)
from each process, but not errors (stderr).

4 mc.set.seed=TRUE sets the processes’ seeds to something unique,
otherwise it is copied with the other state information.
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parallel

multicore: Pre-Scheduling

mc.preschedule controls how data are allocated to processes.

if TRUE, then the data is divided into n sections a priori and
passed to n processes (n is the number of cores to use).

if FALSE, then a job is constructed for each data value
sequentially, up to n at a time.

The author provides some advice on whether to use TRUE or FALSE
for mc.preschedule.

TRUE is better for short computations or large number of
values in X.

FALSE is better for jobs that have high variance of completion
time and not too many values of X.
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parallel

Example: Random Subset CV with mclapply

Let’s use mclapply to perform the same operation as in the
previous example.

1 system.time({

2 acc <- do.call(c, mclapply(seq_len (10), fold , mc.

cores = 10) )

3 }) #If I specify 24, I get \texttt{NA} for each

core that was not scheduled.

4

5 #user system elapsed

6 #16.280 0.390 1.699

7 #Remember , 12.5s serial!

seq len is similar to a foreach from 1 to 10 or range.
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parallel

Example: 10-fold CV with mclapply

By modifying the original function, we can now do 10-fold CV
easily.

1 system.time({

2 acc <- do.call(c, mclapply(seq_len (10), fold.cv,

mc.cores = 24) )

3 })
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Example: mclapply Performance

For a text mining example (previous incarnation of this talk) on an 8-core
system, processing time improves dramatically using all 8-cores.
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Notice that using pre-scheduling yields superior performance here, decreasing

processing time from 3 minutes to 25 seconds.
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parallel

Example: mclapply Performance

So, the higher mc.cores is, the better, right? NO! On a 4-core system, note
that performance gain past 4 cores is negligible.
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It is not a good idea to set mc.cores higher than the number of cores in the

system. Setting it too high will “fork bomb” the system.
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mcparallel and mccollect

mcparallel allows us to create an external process that does
something. After hitting enter, R will not wait for the call to finish.

mcparallel(expr, name, mc.set.seed = FALSE, silent = FALSE)

This function takes as parameters:

some expression to be evaluated, expr.

an optional name for the job, name.

miscellaneous parameters mc.set.seed and silent.
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mcparallel and mccollect

mccollect allows us to retrieve the results of the spawned
processes.

mccollect(jobs, wait = TRUE, timeout = 0, intermediate = FALSE)

This function takes as parameters:

jobs:
a list of process objects that were bound using mcparallel.
an integer vector of Process IDs (PID). We can get the PID by
typing the variable associated with the process and hitting
ENTER.

whether or not to wait for the processes in jobs to end. If
FALSE, will check for results in timeout seconds and return.

a function, intermediate, to execute while waiting for
results.
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Demonstration: mcparallel and mccollect

As a quick example, consider a silly loop that simply keeps the
CPU busy incrementing a variable i for duration iterations.

1 my.silly.loop <- function(j, duration) {

2 i <- 0

3 while (i < duration) {

4 i <- i + 1

5 }

6 #When done , return TRUE to indicate that this

function does *something*

7 return(paste("Silly", j, "Done"))

8 }

9 silly.1 <- mcparallel(my.silly.loop(1, 10000000))

10 silly.2 <- mcparallel(my.silly.loop(2, 5000000))

11 mccollect(list(silly.1, silly .2))

Trivially, silly.2 will finish first, but we will wait (block) for both
jobs to finish.
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Demonstration: mcparallel and mccollect

We can also be impatient and only wait s seconds for a result, and then move
along with our lives. If the jobs exceed this time limit, we must poll for the
results ourselves. We set wait=FALSE and provide timeout=2 for a 2 second
delay. (Yes, I am impatient)

1 silly.1 <- mcparallel(my.silly.loop(1, 10000000))

2 silly.2 <- mcparallel(my.silly.loop(2, 5000000))

3 mccollect(list(silly.1, silly .2), wait=FALSE ,

timeout =2)

4 #we can get the results later by calling ,

5 mccollect(list(silly.1, silly .2))

Trivially, silly.2 will finish first, but we will wait (block) for both jobs to

finish.

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



parallel

Demonstration: mcparallel and mccollect

We can ask R to execute some function while we wait for a result.

1 status <- function(results.so.far) {

2 jobs.completed <- sum(unlist(lapply(results.so.far ,

FUN=function(x) { !is.null(x) })))

3 print(paste(jobs.completed , "jobs completed so far.")

)

4 }

5 silly.1 <- mcparallel(my.silly.loop(1, 10000000))

6 silly.2 <- mcparallel(my.silly.loop(2, 5000000))

7 results <- mccollect(list(silly.1, silly .2), intermediate

=status)

Trivially, silly.2 will finish first, but we will wait (block) for both
jobs to finish.
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parallel multicore-Functionality Gotchas

Weird things can happen when we spawn off processes.

1 never use any on-screen devices or GUI elements in the
expressions passed to parallel. Strange things will happen.

2 CTRL+C will interrupt the parent process running in R, but
orphans the child processes that were spawned. If this
happens, we must clean up after ourselves by killing off the
children and then garbage collecting.

1 kill(children ())

2 collect ()

Child processes that have finished or died will remain until
they are collected!

3 I am going to hell for the previous bullet...
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Differences from multicore Standalone

There are two minor differences between parallel and the
original multicore package

1 low-level functions in my previous slides are no longer exported
in the namespace because they should never need to be used.

2 several functions (i.e. parallel and collect) now have mc

added at the beginning of their names to prevent masking.
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Switching Gears

The new parallel package distributed with R 2.14 provides

1 a modified version of snow allowing socket clusters and
forking processes for explicit parallelism.

2 the multicore package for intra-host implicit parallelism.

Other packages originally from Revolution Computing offer other
important parallelization capabilities.

1 foreach to iterate over a set of values in parallel.

2 RHadoop to interface R with Hadoop1.

1RHIPE, http://www.rhipe.org is another package to integrate R and
Hadoop, and is still actively developed
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R and Hadoop: RHadoop

Hadoop is an open-source implementation of Map-Reduce, a
concept that originated in functional languages such as Lisp and
was made popular by Google2.

In order to understand and use RHadoop, it is important to first
understand MapReduce and Hadoop. Unfortunately, Hadoop can
be quite complex, so we will skim the basics and see some
examples.

2MapReduce: Simplified Data Processing on Large Clusters
Ryan R. Rosario
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MapReduce

MapReduce is a paradigm for processing huge amounts of data on
disk (petabytes are a piece of cake at Yahoo). It consists of two
steps:

1 Map phase: compute some transformation function on each
piece of data independently (like a row from a log file, a web
page, etc.) and output a key-value pair. The map phase is
typically used for extracting fields from data, transforming or
parsing data, and filtering data.

2 Reduce phase: the output from map phase is sorted and
grouped by key. Some aggregate function is computed over
the values associated with the key, and this is output to disk.
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Hadoop MapReduce

Hadoop jobs are typically written in Java. For the full experience,
and for its full power, it is generally suggested to write jobs in Java.

However, as long as your jobs can read from STDIN and write to
STDOUT, you can use Hadoop Streaming (distributed with Hadoop)
to write Hadoop jobs in any language, including R.

There are many limitations with Streaming however. RHadoop is
based on Streaming.

Ryan R. Rosario
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A Boring but Useful Example

Suppose we have TBs of logs containing daily statistics about the number of
times a particular ad was shown on a particular website. We want to provide an
analysis of the number of times a particular ad was shown on a particular
website during the month of February.

Input: log files for 28 days in February (the number of logs is likely > 28).

1 Map phase: for each line, output a compound key like url:ad id and
the the number of times the ad displayed on the page at URL. Note this
is a key-value pair.

2 Between Map and Reduce: all values are placed into groups by key,
and then distributed to reducers.

3 Reduce phase: Compute the sum over all of the values associated with
the compound key.
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How Does it Work?

Like the relationship status: It’s Complicated.

There are several pieces to the framework.

The NameNode is the queen bee – it maintains the index of
the distributed filesystem HDFS. There is only one namenode
per cluster, and it runs on the master node. It is also the
single point of failure.

The SecondaryNameNode maintains a snapshot of the
namenode’s memory structure to reduce filesystem corruption
and data loss. It is not a failsafe for a failed namenode.
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How Does it Work?

Like the relationship status: It’s Complicated.

There are several pieces to the framework.

The JobTracker maintains job scheduling information and
also provides the main web portal for information about
running, completed and failed jobs. Every job consists of
several tasks.

The TaskTrackers actually do the work and communicate
with the JobTracker about tasks completed, in progress and
failed.

The DataNode is more low-level and performs the main I/O
of moving bytes etc. for HDFS.
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What Lives Where?

The NameNode lives on the master node, always.

The SecondaryNameNode should live on a separate node than
the worker node, but not required.

The JobTracker may be on the master node, or on a separate
node.

Every node hosts TaskTrackers.

Every node is a DataNode.
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What Lives Where?
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HDFS: Hadoop Distributed FileSystem

HDFS is the filesystem that forms the backbone of Hadoop on a
cluster.

allows easy reading/writing of data from systems connected to
the HDFS.

stores data throughout the cluster, in chunks.

provides data redundancy (if configured).

NameNode stores metadata, DataNode stores data.

a kinda-sorta “meta-filesystem”. On most installations, sits
atop another filesystem.
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Do I Need a Hadoop Cluster?

There are several options for running Hadoop jobs that do not
require $10,000+ of hardware.

1 Can run jobs locally with or without HDFS. (easiest option)

2 Can run jobs on a cluster or any size.

3 Can setup and configure Hadoop to run on EC2 using either
one machine, or multiple with low or high-end hardware.

4 Can use Amazon Elastic MapReduce (EMR) to run jobs
written in Java or Streaming with multiple options. (easier
option)
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Words of Wisdom

“When first beginning with Hadoop, you may feel overwhelmed. It
takes a month or so of solid continuous use to get entirely
comfortable with the framework, and to learn how all of the pieces
move together and fit together. Don’t get discouraged.”

-Me
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Various Flavors of Hadoop

Hadoop has undergone a commercialization over the past few
years.

(a) (b)

(c) (d)

Cloudera : Hadoop :: Revolution : R :: Canonical

:: Ubuntu
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Where to Hadoop?

Hadoop can be downloaded from Apache’s website.

http://hadoop.apache.org/

For another flavor or Hadoop, check the vendor’s website.
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RHadoop Contents

RHadoop consists of three packages:

1 rhdfs for file management and I/O in HDFS.

2 rmr for executing MapReduce jobs.

3 rhbase for interfacing R with HBase.3

3We will not get here.
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RHadoop Contents

RHadoop’s three packages can be downloaded as stable archives, or
as a git repository from

https://github.com/RevolutionAnalytics/RHadoop
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The Missing Slide

Due to time constraints, and preventing the audience from getting
frustrated, I defer to the documentation on how to install and set
up Hadoop and how to install RHadoop.

Installing just requires from Linux shell experience and patience.
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The Missing Slide

Since Hadoop is typically used on commodity hardware, it is
common to see Linux on these machines (since it is cheap... free)
instead of Windows.

Most configuration guides are tailored towards Linux. My favorite
set of directions are provided by Michael Noll45. Although they are
for Ubuntu, they should work with most Linux distributions and
Mac OS X with some labor.

4
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

5
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
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How to Proceed

As I mentioned, installation and configuration is outside the scope
of this talk. However, you will need to research (or already know)
how to do the following before continuing:

1 Install Sun (Oracle) Java (not OpenJDK).
2 Install and configure Hadoop on your local machine.
3 Optionally: Install and configure Hadoop for multiple

machines in a cluster.
4 Set environment variables for Hadoop and the JVM.
5 Allow the hadoop user (or whomever) to login without a

password.
6 Install an R package from source.
7 Format the namenode to initialize HDFS.
8 Start and stop the Hadoop cluster.
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Getting Started with RHadoop

First, we load the rhdfs package, and then the rmr package.
Note all of the prerequisites.

> library(rhdfs)

Loading required package: rJava

This is rhdfs 1.0.1. For overview type ?rhdfs.

HADOOP_HOME=/home/ryan/usr/local/hadoop #Must be set beforehand

HADOOP_CONF=/home/ryan/usr/local/hadoop/conf

> library(rmr)

Loading required package: RJSONIO

Loading required package: itertools

Loading required package: iterators

Loading required package: digest
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Hello World

As with all of these parallel libraries, we use lists and apply
functions to them. This is natural in MapReduce. Suppose we
want to compute the squares of a bunch of numbers, say 10,000.

1 my.ints <- 1:10000

2 out = lapply(my.ints , function(x) x^2) #almost instant

3 out

4 [[1]]

5 [1] 1

6

7 [[2]]

8 [1] 4

9

10 [[3]]

11 [1] 9

12 ...
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Hello World

Now let’s use Hadoop. I must warn that this is just a small
example, so don’t be disappointed by the result.

1 my.ints = to.dfs (1:10000)

2 out = mapreduce(input = my.ints , map = function(k,v

) keyval(v, v^2), reduce = function(k,v) keyval

(k, v))

3 stuff = from.dfs(out)

Watch what happens...
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Hello World

We’ve created a monster! Hadoop is very verbose. The main line
of interest is Job complete.

> my.ints = to.dfs(1:10000)

12/03/14 22:42:33 INFO util.NativeCodeLoader: Loaded the native-hadoop library

12/03/14 22:42:33 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library

12/03/14 22:42:33 INFO compress.CodecPool: Got brand-new compressor

> out = mapreduce(input = my.ints, map = function(k,v) keyval(v, v^2))

packageJobJar: [/tmp/RtmpxwZWJx/rmr-local-env, /tmp/RtmpxwZWJx/rmr-global-env, /tmp/RtmpxwZWJx/rhstr.map590e7a44b3e8, /home/ryan/tmp/hadoop-unjar8197744542078888689/] [] /tmp/streamjob2877886412877001461.jar tmpDir=null

12/03/14 22:42:36 INFO mapred.FileInputFormat: Total input paths to process : 1

12/03/14 22:42:36 INFO streaming.StreamJob: getLocalDirs(): [/home/ryan/tmp/mapred/local]

12/03/14 22:42:36 INFO streaming.StreamJob: Running job: job_201203142235_0003

12/03/14 22:42:36 INFO streaming.StreamJob: To kill this job, run:

12/03/14 22:42:36 INFO streaming.StreamJob: /home/ryan/usr/local/hadoop/bin/hadoop job -Dmapred.job.tracker=localhost:54311 -kill job_201203142235_0003

12/03/14 22:42:36 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201203142235_0003

12/03/14 22:42:37 INFO streaming.StreamJob: map 0% reduce 0%

12/03/14 22:42:45 INFO streaming.StreamJob: map 49% reduce 0%

12/03/14 22:42:47 INFO streaming.StreamJob: map 100% reduce 0%

12/03/14 22:42:54 INFO streaming.StreamJob: map 100% reduce 17%

12/03/14 22:42:55 INFO streaming.StreamJob: map 100% reduce 100%

12/03/14 22:42:56 INFO streaming.StreamJob: Job complete: job_201203142235_0003

12/03/14 22:42:56 INFO streaming.StreamJob: Output: /tmp/RtmpxwZWJx/file590e24aa7be1

This example has a lot of overhead, and takes about 30 seconds to
complete.

Ryan R. Rosario

Parallelization in R, Revisited Los Angeles R Users’ Group



Dude... What Just Happened?

1 We create a vector from 1 to 10000 and store it in HDFS.6

We get back a handle to the file in HDFS.

2 We call the mapreduce function to run the Hadoop job. We
specify the handle from the previous step as the input. We
also specify a map function and a reduce function. We get a
handle to the output in HDFS.

3 We convert the data in HDFS into an R object.

6a temporary file is created in HDFS, but let’s abstract it away.
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Dude... What Just Happened?

Abbreviated output from the Hadoop execution:

1 my.ints = to.dfs (1:10000)

2 out = mapreduce(input = my.ints , map = function(k,v)

keyval(v, v^2), reduce = function(k,v) keyval(k, v))

3 stuff = from.dfs(out)

4 > stuff [1]

5 [[5]]

6 [[5]]$key

7 [1] 5

8

9 [[5]]$val

10 [1] 25

11 ...

In typical MapReduce fashion, we get back a list of keys and values.
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The map Parameter

The map parameter specifies the map function.

It accepts two parameters: key and value.7

The value v contains a piece of data that we are going to
process. For this example, it is an element of the list 1:10000.

We make a call to the keyval function which tells Hadoop to
return k and v as a key-value pair from the map phase.8.

Note: the map function can also return a list of key/value calls, or
NULL.

7The input key to the mapper is usually thrown away in the map phase.
Depends on the InputFormat.

8like collect or write in the Java API.
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Our map Function

map = function(k,v) keyval(v, v**2)

read in a key k (thrown out), and a value v.

return a key/value pair where the key is the original value v

and the value is the exponentiation v**2.
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The reduce Parameter

The reduce parameter specifies the reduce function.

It accepts two parameters: key and value which come from
the output of the map function.

The key k specifies a group of data that contains one or more
values.

The value v contains one specific value with the key specified
by k, a squared element.

We make a call to the keyval function which tells Hadoop to
return k and v as a key-value pair from the map phase.9.

9like collect or write in the Java API.
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Our reduce Function

reduce = function(k,v) keyval(k, v)

read in a key k (a group identifier), and a value v.

return a key/value pair where the key is the same, and the
value is also the same (we do not do any processing in the
reducer for this example).

This was an example of a map-only job, or a job with an identity
reducer. Many data transformation and text parsing jobs are
map-only.
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Use MapReduce for k-Means

Most of the work can be done locally. To compute the new centers
at each iteration, we use MapReduce.

1 kmeans =

2 function(points , ncenters , iterations = 10, distfun =

NULL) {

3 if(is.null(distfun))

4 distfun =

5 function(a,b) norm(as.matrix(a-b), type = ’F’)

6 newCenters =

7 kmeans.iter(

8 points ,

9 distfun ,

10 ncenters = ncenters)

11 for(i in 1: iterations) {

12 newCenters = kmeans.iter(points , distfun , centers =

newCenters)}

13 newCenters}

Note that MapReduce will be invoked by kmeans.iter.
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Better Example: k-Means

1 kmeans.iter =

2 function(points , distfun , ncenters = dim(centers)[1],

centers = NULL) {

3 from.dfs(mapreduce(input = points ,

4 map =

5 if (is.null(centers)) {

6 function(k,v) keyval(sample (1: ncenters ,1),v)}

7 else {

8 function(k,v) {

9 distances = apply(centers , 1, function(c) distfun(

c,v))

10 keyval(centers[which.min(distances),], v)}},

11 reduce = function(k,vv) keyval(NULL , apply(do.call(

rbind , vv), 2, mean))),

12 to.data.frame = T)}
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The map Function

1 map =

2 if (is.null(centers)) {

3 function(k,v) keyval(sample (1: ncenters ,1),v)}

4 else {

5 function(k,v) {

6 distances = apply(centers , 1, function(c) distfun(

c,v))

7 keyval(centers[which.min(distances),], v)}

8 }

If no centers have been computed, randomly pick a cluster for
each value v. Return the cluster ID as key.

Otherwise, apply the distance function to the list of centers
and the values v. Pick the center with the minimal distance.
Return the new center as the key k and the data value v.
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The reduce Function

1 reduce = function(k,vv) keyval(NULL ,

2 apply(do.call(rbind , vv), 2, mean)))

The input is a key (group), in this case, a center ID. The
other input is the list of values vv for that key k.

We row bind all of the data points for this cluster, take the
mean, and return it as a value, but toss the cluster ID (key)
because it is meaningless.
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Diagnostic Information

The JobTracker has a web interface, typically available at
http://master ip:50030, that provides information about
running, completed and failed jobs. This is a good place to look
for errors if a job fails.

Understanding what the Java exceptions mean takes a lot of
practice. The URL to the diagnostic page for your job is reported
to you when the job starts running.
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Diagnostic Information
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Other Hadoop Friends

1 HBase is a column-oriented data store.

2 Hive is a data warehouse for ad hoc querying.

3 Pig for ad-hoc analysis similar to R.

4 Mahout for scalable machine learning (partially atop
Hadoop).

5 Cascading, Azkaban, Oozie for chaining jobs and workflow.
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A Good Hadoop Reference
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A Good Hadoop Reference

Los Angeles Hadoop Users Group (LA-HUG)
http://www.meetup.com/LA-HUG/
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doMC/foreach

GPUs: Towards the Future

GPU = Graphics Processing Unit

GPUs power video cards and draw pretty pictures on the screen.

They are also VERY parallel, very fast, cheap (debatable), and
low-power. However, they suffer from low bandwidth.
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doMC/foreach

GPUs: Towards the Future

In 2008, the fastest computer in the world was the PlayStation 3.
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doMC/foreach

GPUs: Towards the Future

Here are just a few numbers
for you.

1 PC CPU: 1-3Gflop/s
average

2 GPU: 100Gflop/s average.
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doMC/foreach

GPUs: Towards the Future

High level languages such as CUDA exist for interacting with a
GPU with available libraries including BLAS, FFT, sorting, sparse
multiply etc.

But still hard to use with complicated algorithms because...

Pitfall: Data transfer is very costly and slow into GPU space.
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GPUs: Towards the Future

There are two packages currently for working with GPUs in R and
your mileage may vary.

1 gputools provides R interfaces to some common statistical
algorithms using Nvidia’s CUDA language and its CUBLAS
library as well as EMI Photonics’ CULA libraries.

2 cudaBayesreg provides a CUDA parallel implementation of a
Bayesian Multilevel Model for fMRI data analysis.

3 More to come!
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A Caveat

Q: But what if I want my tasks to run faster?
A: Parallelization does not accomplish that.

1 Throw money at faster hardware.

2 Refactor your code.

3 Interface R with C, C++ or FORTRAN.

4 Interface with C and a parallelism toolkit like OpenMP.

5 Use a different language altogether (functional languages like
Clojure, based on Lisp, and Scala are emerging as popular).
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What I Hope to See

I look forward to the future. I hope to see:

1 more, and easier to use GPU packages for R.

2 an interface to Mahout.

3 interfaces to GraphLab and Spark.

4 Integration with other Hadoop subprojects (Pig etc.)
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doMC/foreach

In Conclusion

1 R provides several ways to parallelize tasks.

2 They are pretty easy to use.

3 It is important to know when not to parallelize.

4 They do not fall victim to the Swiss Cheese Phenomenon
under typical usage.

5 Worth learning as more and more packages begin to suggest
them (tm and some other NLP packages).

6 Hadoop is the go-to standard for big data a la cheap.
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My Previous Slides

For (much) more (detailed) information about the standalone snow

family of packages, foreach and multicore, see the materials
from my previous talks:

Parallelism:

http://www.bytemining.com/

2010/07/taking-r-to-the-limit-part-i-parallelization-in-r/

Big Data:

http://www.bytemining.com/

2010/08/taking-r-to-the-limit-part-ii-large-datasets-in-r/
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For More Information
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Keep in Touch!

My email: ryan@stat.ucla.edu

My blog: http://www.bytemining.com

Follow me on Twitter: @DataJunkie
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The End

Questions?
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Thank You!
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Appendix A
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doMC/foreach

foreach allows the user to iterate through a set of values parallel.

By default, iteration is sequential, unless we use a package
such as doMC which is a parallel backend for foreach.

doMC is an interface between foreach and multicore.

Windows is supported via an experimental version of
multicore.

only runs on one system. To use on a cluster, can use the
doNWS package from REvolution Computing.
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doMC/foreach Usage

1 Load the doMC and foreach libraries.

2 MUST register the parallel backend: registerDoMC().
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

... controls how ex is evaluated. This can be an iterator such as icount(n),
that counts from 1 to n.

.combine is the action used to combine results from each iteration. rbind will
append rows to a matrix, for example. Can also use arithmetic operations, or
write your own function. By default, output is returned as a list.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

.final is a function to call once all results have been collected. For example,
you may want to convert to a data.frame.

.inorder=TRUE will return the results in the same order that they were
submitted. Setting to FALSE gives better performance.

.errorhandling specifies what to do if a task encounters an error. stop kills
the entire job, remove ignores the input that caused the error, or pass just
ignores the error and returns the result.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

.packages specifies a vector of package names that each worker needs to load.

.verbose=TRUE can be useful for troubleshooting.

For the other parameters, check out the documentation for foreach.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(...) when(cond) %dopar% ex times(n)

when(cond) causes the loop to execute only if cond evaluates to TRUE.

%dopar% causes ex to execute in parallel. Can replace with %do% to execute in
sequence (for debugging).

times(n) executes the entire statement n times.

Can also nest foreach statements using syntax like foreach(...) %:%

foreach(...).
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doMC/foreach Example of a Nested for Loop

1 sim <- function(a, b) { return (30*a + b**) }

2 avec <- seq (1 ,100); bvec <- seq(5,500,by=5)

3 x <- matrix(0,length(avec),length(bvec))

4 for (j in 1: length(bvec)) {

5 for (i in 1: length(avec)) {

6 x[i, j] <- sim(avec[i], bvec[j])

7 }

8 }

9 method .1 <- x

10

11 #with foreach

12 x <- foreach(b = bvec , .combine = "cbind") %:%

13 foreach(a = avec , .combine = "c") %dopar% {

14 sim(a,b)

15 }

16 method .2 <- x

17 all(method .1 == method .2) #both loops yield the same

result.
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doMC/foreach Example of a Nested for Loop

The example was trivial because each iteration performs a
negligible amount of work! If we were to replace %do% with
%dopar%, we would actually get longer processing time, which
brings me to this point...

“Each iteration should execute computationally-intensive
work. Scheduling tasks has overhead, and can exceed the

time to complete the work itself for small jobs.”
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foreach Demonstration: Bootstrapping

Here is a better example. How long does it take to run 10,000 bootstrap iterations (in
parallel) on a 2-core MacBook Pro? What about an 8-core MacPro?

1 data(iris)

2

3 iris.sub <- iris[which(iris[, 5] != "setosa"), c(1,5)]

4 trials <- 10000

5 result <- foreach(icount(trials), .combine=cbind) %dopar%

{

6 indices <- sample (100, 100, replace=TRUE)

7 glm.result <- glm(iris.sub[indices , 2]~iris.sub[

indices , 1], family=binomial("logit"))

8 coefficients(glm.result) #this is the result!

9 }
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foreach Demonstration: Bootstrapping

Demonstration on 2-core server, here, if time.
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foreach Demonstration: Bootstrapping Performance

On an 8-core system, the processing time for this operation decreased from 59s
using one core, to about 15s using 8-cores. This is about a 4x speedup. We
may expect an 8x speedup, but the improvement is dependent on many
variables including system load, CPU specifications, operating system, etc.
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foreach Nerd Alert: quicksort

If you are interested, here is an implementation of quicksort in R, using
foreach!

1 qsort <- function(x) {

2 n <- length(x)

3 if (n == 0) {

4 x

5 } else {

6 p <- sample(n, 1)

7 smaller <- foreach(y=x[-p], .combine=c) %:% when(y <=

x[p]) %do% y

8 larger <- foreach(y=x[-p], .combine=c) %:% when(y >

x[p]) %do% y

9 c(qsort(smaller), x[p], qsort(larger))

10 }

11 }

12 qsort(runif (12))
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foreach Additional Features

foreach, and related packages, provide a lot more functionality that may be of
interest.

foreach can be used on a cluster by using a different parallel backend.
doMC uses multicore whereas doNWS and doSNOW use nws and snow

respectively. These are maintained by Revolution Computing.

in this talk we assumed that we iterate over integers/counters. We can
also iterate over objects such as elements in a vector by using custom
iterators, using the iterators package.
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