
Some Examples of
(Markov Chain) Monte Carlo Methods

Ryan R. Rosario

What is a Monte Carlo method?

Monte Carlo methods rely on repeated sampling to get some computational result. Monte Carlo
methods originated in Physics, but no Physics knowledge is required to learn Monte Carlo methods!
The name “Monte Carlo” was the codename applied to some computational methods developed at
the Los Alamos Lab while working on nuclear weapons. Yes, the motivation of the codename was
the city in Monaco, but does not come directly from gambling.

Monte Carlo methods all follow a similar pattern:

1. Define some domain of inputs. This just means we have some set of variables and what values
they can take on, or we have some observations that are part of a dataset.

2. Generate inputs (the values of the variables, or sets of observations) randomly, governed by
some probability distribution.

3. Perform some computation on these inputs.

4. Repeat 2 and 3 over and over either an infinite number of times (a very large number of times
usually ≥ 10000), or until convergence.

5. Aggregate the results from the previous step into some final computation.

The result is an approximation to some true but unknown quantity, which is no big deal since that
is all we ever do in Statistics!

A Motivating Example with Code: The Bootstrap

Suppose we have a small sample and we want to predict y using x. If we fit a standard linear
regression model, we may not be able to trust the parameter estimates, and particularly that
standard error of these estimates (SE(β̂1)). To estimate the standard error, we can use the
bootstrap.

Step 1 from the little algorithm above is already done for us. The domain of inputs is just the
observations in the sample.

2. Draw a random sample (with replacement) of size n from the data. This is called a bootstrap
sample. (generate inputs)

3. Fit a linear regression model and get the value of β̂1 from it. Store this value, as we will
need it. (do something)

4. Repeat steps 1 and 2, say 10,000 times (like with any good shampoo, repeat).

5. Once we have finished the 10,000th iteration, we have a nice collection of β̂1s, a sampling
distribution. Recall from Stats 10 that the standard deviation of a sampling distribution is
called the standard error. Thus, if we take the standard deviation of our collection of β̂1s, we
can approximate the standard error of β̂1. (aggregate)
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Again, this is just an example. If you are not familiar with the bootstrap, it’s not a problem. It’s
a pretty cool method though, so you may want to take a look at...

In this class we will be programming in R. There are a couple of things from your PIC 10A class
we will use. Of course, in R land, not C++ land.

These Monte Carlo methods rely on repeatedly drawing samples. So we need a loop. There are a
few different kinds of loops. Let’s look at two that you will need for this class.

The for Loop

The for loop defines some counter variable. In basic programming texts, this is usually i or j

etc. Here I will call it it which stands for iteration, but it really doesn’t matter what you call it.
I define a variable, its which stands for iterations, the total number of times I want to run this
simulation – or more succinctly, the number of samples I want to draw.

The for loop runs once for each value of it in the range given. Here, the range will be 1:its that
is, it = 1, . . . , its. The for loop will do something its = 10,000 times. We also need to initialize
some values that will be used within the loop. First, we need to specify the sample size for each
bootstrap sample, n = 15. We also need to initialize a vector to store all of the intermediate results
from the sampling process.

Also, sampling in R is usually better achieved by using indices of observations rather than the
observations/rows themselves. The seq(a, b) function just returns a vector of integers from a
to b inclusive, which are the indices. The indices will just be the values 1 through the number of
observations in X and Y which is given by the length function.

So far we have

1 its <- 10000 #number of iterations

2 n <- 15 #size of each bootstrap sample

3 b <- rep(0, its) #repeats the number 0, its times

4 #yielding a vector of length its.

5 indices <- seq(1, length(Y)) #generate a sequence from 1 to whatever

6 #the length of Y is.

7 for (it in 1:its)

8 {

9 ..... stuff to repeat ..... (steps 2 and 3)

10 }

Now we need to implement the little algorithm above. First, we need to draw a random sample
from the dataset. So first let’s write the code to draw a random sample of size n from the dataset.
The sample function has the format sample(from, size, with.replacement?) and draws a
random sample from from of size size. Without the third argument, sample will sample without
replacement, so we need to pass replace=TRUE. bootstrap.sample below contains the sampled
indices.

#draw a random sample of size n WITH replacement.

bootstrap.sample <- sample(indices, n, replace=TRUE)

Next, we fit a linear model using only the observations in the bootstrap sample. We subset on
bootstrap.sample:

the.model <- lm(Y[bootstrap.sample]~X[bootstrap.sample])

the.model is an object, and contains several different things: the coefficients, residuals, etc. We
want to extract the coefficients from the model, particularly β̂1 which will be the second element
of the coefficient vector – β̂0 is the first element.
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#First, fit the model.

the.model <- lm(Y[bootstrap.sample]~X[bootstrap.sample])

#Next, extract the second coefficient from this model.

bootstrap.beta <- the.model$coefficients[2]

#Finally, store this value for later use!

b[it] <- bootstrap.beta

Note that we have constructed a sampling distribution of β̂1 now. The standard deviation of a
sampling distribution is the standard error, so taking the standard deviation of b yields the value
we want, SE(β1).

The final code is,

1 its <- 10000 #number of iterations

2 n <- 15 #size of each bootstrap sample

3 b <- rep(0, its) #repeats the number 0, its

4 #times yielding a vector of length its.

5 #generate a sequence from 1 to whatever the length of Y is.

6 indices <- seq(1, length(Y))

7 for (it in 1:its)

8 {

9 #Steps 2 and 3

10 #draw a random sample of size n WITH replacement.

11 bootstrap.sample <- sample(indices , n, replace=TRUE)

12 #First , fit the model.

13 the.model <- lm(Y[bootstrap.sample]~X[bootstrap.sample ])

14 #Next , extract the second coefficient from this model.

15 bootstrap.beta <- the.model$coefficients [2]

16 #Finally , store this value for later use!

17 b[it] <- bootstrap.beta

18 }

19 #The iterations of the above for loop is step 4.

20 #Final aggregation , step 5.

21 sd(b)

The for loop is appropriate when we know how many iterations we need to run,
otherwise, the repeat loop is better.

The repeat Loop

The repeat loop is similar to the while loop you learned about in PIC 10A. We use the repeat

loop when we do not necessarily know the number of iterations to perform. This is
particularly useful when we need to monitor for convergence, something we will do
over and over.

We start by initializing a counter variable, called it again (but you can call it whatever you want).
We also must initialize a vector where we will store the β̂1s, but since we do not assume to know
the number of iterations in advance, we must start with an empty vector, and insert a value at
each iteration.

We then tell R to repeat a series of computations. At the end of each iteration, a condition is
checked (this is where we would check for convergence). If the condition is true, we break out of
the loop, otherwise we increment the counter and continue.

The ifelse(logical condition to check, what to do if TRUE, what to do if FALSE) statement
is a major difference in the body of the loop. Here, we will just check whether or not we have reached
its, the total number of iterations.
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1 #Same as before:

2 its <- 10000 #number of iterations

3 n <- 15 #size of each bootstrap sample

4 #generate a sequence from 1 to whatever the length of Y is.

5 indices <- seq(1, length(Y))

6

7 #Differences for repeat:

8 it <- 1 #start at 1st iteration.

9 b <- c() #c combines two items into a vector. c() = empty vector

10 repeat {

11 #Steps 2 and 3

12 #draw a random sample of size n WITH replacement.

13 bootstrap.sample <- sample(indices , n, replace=TRUE)

14 #First , fit the model

15 the.model <- lm(Y[bootstrap.sample]~X[bootstrap.sample ])

16 #Next , extract the second coefficient from this model.

17 bootstrap.beta <- the.model$coefficients [2]

18 #Finally , tack on this value to the b vetor.

19 b <- c(b, bootstrap.beta)

20 #Determine if we can break out of the loop.

21 ifelse(it >= its , break , it <- it + 1)

22 #We test if it >= its

23 #(usually this is where we put convergence test)

24 #If true , break out of the loop.

25 #If false , increment it and start the next iteration.

26 }

27 sd(b) #Step 5, final result
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Example: Computing π

How can we compute π? Mathematicians have been doing this for ages, precisely. Every few years,
some mathematician will announce “I have found the 542nd digit of π!” How the mathematicians
do this exactly, I am not sure, but we can do it much easier using Monte Carlo methods.

1. Create a square “game board” and inscribe a circle in it (domain of infinitely many binary
inputs, either a piece of rice lands on a space, or it doesn’t, ignoring the boundary of the
circle that is). What is the ratio of the area of the circle and the corresponding square?

Area of Circle

Area of Square
=
πr2

l2
=
π
(
l
2

)2
l2

=
πl2

4l2
=
π

4

2. Drop small pieces of rice onto this board uniformly at random. (generate inputs randomly)

3. Do this over and over again, say 10,000 times. (repeat)

4. Count the number of grains of rice that are in the circle. Assume that no piece of rice is
on the boundary of the circle, and assume that we kept track of how many grains of rice we
dropped. Then, the probability that a piece of rice landed in the circle is

p =
# of Grains of Rice in Circle

# of Grains of Rice Dropped, Total

We know that the probability should be approximately π
4 . Then what is π?

π

4
= p =⇒ π = 4p

But, if it were this simple, some mathematicians would be out of a job. The trick to getting a
good approximation of π is to use a huge number of grains of rice. If we were doing this
experiment in real life, we would also probably want to make the square as large as possible.

A common question may be, “but if I were to drop a bunch of grains of rice onto the game
board, wouldn’t they all stack up in the same place?” Yes, that is why we must sample the square
uniformly – each time we drop a piece of rice, we drop it from a randomly chosen location! A
robot would be ideal for this little experiment.

There is another way to formulate the problem. The famous Buffon’s Needle1 problem is a more
complicated, but beautiful, explanation.

1see http://en.wikipedia.org/wiki/Buffon’s needle
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Example: Simulated Annealing and Stochastic Search Applied to
Scheduling and AI

When you were in high school, you were given a class schedule each year containing classes that you
wanted to take, at the appropriate difficulty level. Somehow, your schedule always seemed to work
out so that you always got the classes you needed and usually got the classes you wanted.

High school scheduling and similar assignment problems are constraint satisfaction problems. Schedules
must adhere to certain rules. For example, a football player needed to be scheduled into “Football”
during the last period of the day (at least at my school). This means that the AP Statistics class he
needs to take must be scheduled during some other period of the day, otherwise, there is a conflict.
With thousands of students at a high school, how can a counselor schedule all of the courses and
teachers AND schedule all of the students with minimal conflicts? It is not done manually. In
fact, many commercial high school scheduling/records systems use methods based on the process
below to schedule teachers and their classes, as well as students of course. Some of these methods
include simulated annealing and Tabu search. These systems are very expensive. There can be
big money in MCMC.

Or, consider University class timetabling. We know that, for example, there must be enough
sections of Statistics 100C so that students that are taking 101C and 102C can also take 100C.
Faculty preferences and room availability also serve as constraints. At UCLA course scheduling
is done by the Department and is usually handled manually, but at many universities it is done
automatically using software based on these methods.

Or, what about roommate matching? When a student applies for housing, he/she fills out a
questionnaire about various living habits. Some of these are hard constraints such as smoking. A
non-smoker that does not want to live with a smoker will not be put in that situation. Others are
soft constraints, such as a rating on how social the students are.

A mathematician may initially want to solve these problems combinatorially by enumerating every
possible combination of results and searching for the best one. There are two problems with this
approach 1) it favors those that come first in the process, 2) it will never finish. Instead, we perform
a Monte Carlo optimization.

1. First, generate a random partial solution. Assign students to random high school classes or
roommate configurations. While a random selection works, in practice we usually choose a
partial solution that makes sense. This simply shortens the computational process. Each
partial solution is called a state.

2. Next, we propose a new state by randomly swapping two objects: a class on a student’s
schedule, a roommate etc. We also calculate what the cost would be for this new state, and
compare it to the cost of the current state.

• if the new state is worse than the current state, the cost will increase and we may move
to this new state.

• if the new state is better than the current state, the cost will decrease and we will move
to this new state.

Let δ be the change in the cost from the current state to the new state. If the new state is
worse than the current state, we compute the quantity

p = e
− δ
T (t)
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T is a function with respect to time, or a constant, (called the temperature) and is chosen
beforehand so that the quantity is a probability.

Then, we draw a random uniform number m. If m < p, we move to the new state – we
swap the two objects and move on. Otherwise, we do not perform the swap, and the solution
remains the same as it was before. If the new state is better than the current state, we move
to it with probability 1.

3. Repeat the previous two steps either N times, where N is a big number, or until the difference
δ < ε where ε is a tiny number.

4. The output is the state that yielded the smallest cost after convergence.

What is a Cost Function?

A cost function is some function f such that bad states (incompatibilties) yield high cost, and good
states yield low cost. For example, consider the roommate matching problem. Let f be defined as
a weighted sum of mismatching characteristics.

f =
∑

10|Smoke2 − Smoke1|+ 3|Night2 −Night1|+ |Social2 − Social1|

where the sum is computed over all pairs of roommates in the current configuration/state.

• Smokei is a 0/1 variable whether or not roommate i smokes. The difference given above
represents a mismatch. If they both smoke, or both do not smoke, the difference is 0, no
mismatch.

• Nighti is 0/1 variable whether or not roommate i is a night person. Again, if the roommates
differ we get a positive value representing a mismatch, otherwise 0 represents no mismatch.

• Sociali is a number between 1 (hermit) and 10 (celebrity).

The weights I chose are arbitrary and just represent that a smoking mismatch is much more serious
than a sociality mismatch. Of course there are ways to choose which variables are important, and
ways to optimize the weights.

The goal is to minimize the cost/dissimilarity function. This is the big picture. In
Statistics we are always optimizing some function: loss, squared residuals, finding
maximum likelihood estimators, finding maxima/minima of a function.

This process is called simulated annealing2. Simulated annealing is an example of the
Metropolis-Hastings algorithm. Essentially, this process models the process of annealing in
metallurgy – the heating and controlled cooling of a material to increase the size of its crystals and
decrease the number of defects3. These weird analogies are common in MCMC.

Biologists and computer scientists have come up with other optimization algorithms that come from
the study of animals and evolution. Some species that have been studied and applied to optimization
problems are ants (ant colony optimization, where ants search a space to find productive regions),
bees, and fireflies. These algorithms are called swarm optimization algorithms and are similar
to genetic algorithms. Other similar processes include particle swarm optimization, and harmony
search (mimics musicians).

All of these methods collectively are called stochastic search or stochastic optimization.

2see http://www.mit.edu/ dbertsim/papers/Optimization/Simulated%20annealing.pdf for more theory.
3http://en.wikipedia.org/wiki/Simulated annealing

7



Example: Markov Chains applied to PageRank

Google computes a value called PageRank for each entry in its search engine. PageRank essentially
measures how important or valuable a particular website/webpage is. PageRank is part of what
determines which web page is displayed in which rank when you hit the Search button. For some
page p, PageRank uses the number of pages that link to p, as well as the number of pages that p
links to compute the metric.

For some page p, the PageRank is defined as

PR(p) =
∑
v∈Bp

PR(v)

L(v)

where Bp is the set of webpages that link to p and L(v) is the number of pages that p links to. Note
that PageRank is essentially a recurrence relation, but the important thing is that the PageRank
of p assumes that the user randomly surfs from v ∈ Bp to p. Since the next page visited by the
random surfer is, well, random, it depends only on the previous page visited and no other
page. This hints at a Markov chain. Let X1, X2, . . . , Xn be random variables. We say that
X satisfies a Markov condition if

P (Xn+1 = x|X1 = x1, X2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn)

Google is able to estimate the PageRank values using MCMC. After a certain number of iterations,
the Markov chain converges to a stationary distribution of PR values that approximate the probability
that a user would randomly surf to some page p. It should be no surprise that the sum of all
PageRank values is 1. Why...?

Example: Random Walks applied to Sampling the Web

Web research is a hot field right now. To do research, we usually want a random sample. But how
on the web (see what I did there?) do we get a random sample of web pages? Here are some naive
ways:

1. generate a random IP address and find that most IP addresses are not associated with web
servers, and some IP addresses represent multiple web servers. FAIL.

2. generate random URLs. How would we even start to do that? FAIL.

3. use a Monte Carlo method.

Rusmevichientong et. al. (2001) proposed this method for sampling web pages, and Gjoka et. al.
(2009) used this method for selecting a random sample of Facebook users for an analysis.
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The problem is formulated as follows.

1. Perform the following slew of steps...

(a) Pick a web page at random. We could Google the word the and pick the first result, or
we could pick our favorite web site. Doesn’t matter.

(b) Pick a link on the web page at random and move to the new page.

(c) Repeat the previous step N times.

(d) Perform step (b) another K times. Let X1, . . . , XK be the collection of web pages visited
during this part of the crawl and let DK be the set of unique web pages visited during
this part of the crawl.

(e) For each unique page p in DK :

i. Pick a random link and move to the new page associated with that link.

ii. Repeat the previous step M times yielding a new collection of pages Zp1 , Z
p
2 , . . . , Z

p
M .

iii. Compute the number of times we visited page p:

π̂(p) =

∑M
r=1 1(Zpr = p)

M

where 1(Zpr = p) = 1 if Zpr = p and is 0 otherwise.

iv. Accept page p into the final sample with probability β

π̂(p)
where 0 < β < minp=1,...,K π̂(Xp).

2. Repat Step 1 a number of times.

3. The resulting sample of web pages is approximately random.

This is quite a complicated algorithm! Notice again that this process is a Markov chain because the
page we visit next depends only on the page we are currently at and no other page. First, we visit
a bunch (N) of pages (a so called “burn-in” phase). We throw those out. Then, the next K pages
are candidates for inclusion into our random sample. But we must select the members of this set
according to some probability. We estimate a stationary probability π̂ by starting another crawl
at each of the K candidates. The estimated stationary probability is just the number of times we
visited page p when we start a random walk at page p. We get a uniform distribution if we choose
the members of the random sample from the K candidates with probability 1

π̂(p)
but this may not

be a probability. The value β is a normalizing constant and the probability that we include page
p in the random sample is thus β

π̂(p)
. The idea is that this chain converges to a random sample of

the web.

This is an example of Metropolis-Hastings random walk. While we will discuss this algorithm
in class, we will not do anything remotely this complicated!

All of this convergence talk may remind you of Real Analysis. No need for Real Analysis, however,
if you like Analysis and MCMC, you could get carried away with theoretical research in this
field!
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Where is MCMC Common?

There are some fields/applications/situations where MCMC is very common, and a knowledge of
it is a must.

1. Data Mining and Machine Learning often yields a lot of weird distributions, whereas in
some branches of Statistics like Social Statistics, distributions are friendly normals etc. Many
problems in machine learning are impossible to solve deterministically. Computer Vision
makes very heavy use of MCMC.

2. Small and Large Data. Insufficient samples can require resampling to achieve a result. Big
data (several GB) cannot fit in RAM and poses a lot of problems for computation. Again,
we could draw smaller samples that will fit in RAM and then combine the results at the end.

3. Bayesian methods can often yield messy distributions because they require multiplying
together some prior distribution with some likelihood distribution, neither of which need to
be friendly. Even if they both are, there is no guarantee (except for conjugate priors) that
the resulting posterior distribution will be friendly as well.

4. Biological and genetic research for the reasons listed above. The human genome is huge
(big data), but sometimes you may only be working with a small number of markers, proteins,
whatever (small data). Additionally, many problems in genetics are solved using Bayesian
methods. For that reason, biology and genetics are big users of MCMC.
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