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The Brutal Truth

We are here because we love R. Despite our enthusiasm, R has two
major limitations, and some people may have a longer list.

1 Regardless of the number of cores on your CPU, R will only
use 1 on a default build.

2 R reads data into memory by default. Other packages (SAS
particularly) and programming languages can read data from
files on demand.

Easy to exhaust RAM by storing unnecessary data.

The OS and system architecture can only access 232

10242 = 4GB
of physical memory on a 32 bit system, but typically R will
throw an exception at 2GB.
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The Brutal Truth

There are a couple of solutions:

1 Build from source and use special build options for 64 bit and
a parallelization toolkit.

2 Use another language like C, FORTRAN, or Clojure/Incanter.

3 Interface R with C and FORTRAN.

4 Let clever developers solve these problems for you!

We will discuss number 4 above.

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



The Agenda

This talk will survey several HPC packages in R with some
demonstrations. We will focus on four areas of HPC:

1 Explicit Parallelism: the user controls the parallelization.

2 Implicit Parallelism: the system abstracts it away.

3 Map/Reduce: basically an abstraction for parallelism that
divides data rather than architecture. (Part II)

4 Large Memory: working with large amounts of data
without choking R. (Part II)
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Disclaimer

1 There is a ton of material here. I provide a lot of slides for
your reference.

2 We may not be able to go over all of them in the time allowed
so some slides will go by quickly.

3 Demonstrations will be time permitting.

4 All experiments were run on a Ubuntu 10.04 system with an
Intel Core 2 6600 CPU (2.4GHz) with 2GB RAM. I am
planning a sizable upgrade this summer.
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Parallelism

Parallelism means running several computations at the same time and taking
advantage of multiple cores or CPUs on a single system, or CPUs on other
systems. This makes computations finish faster, and the user gets more bang
for the buck. “We have the cores, let’s use them!”

R has several packages for parallelism. We will talk about the following:

1 Rmpi

2 snowfall, a newer version of snow.

3 foreach by Revolution Computing.

4 multicore

5 Very brief mention of GPUs.
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Parallelism in R

The R community has developed several (and I do mean several)
packages to take advantage of parallelism.

Many of these packages are simply wrappers around one or
multiple other parallelism packages forming a complex and
sometimes confusing web of packages.
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Motivation

“R itself does not allow parallel execution. There are some existing
solutions... However, these solutions require the user to setup and
manage the cluster on his own and therefore deeper knowledge
about cluster computing is needed. From our experience this is a
barrier for lots of R users, who basically use it as a tool for
statistical computing.”

From The R Journal Vol. 1/1, May 2009
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The Swiss Cheese Phenomenon

Another barrier (at least for me) is
the fact that so many of these
packages rely on one another.
Piling all of these packages on top
of each other like swiss cheese, the
user is bound to fall through a hole,
if everything aligns correctly (or
incorrectly...).

(I thought I coined this myself...but

there really is a swiss cheese model

directly related to this.)
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Some Basic Terminology

A CPU is the main processing unit in a system. Sometimes CPU
refers to the processor, sometimes it refers to a core on a
processor, it depends on the author. Today, most systems have one
processor with between one and four cores. Some have two
processors, each with one or more cores.

A cluster is a set of machines that are all interconnected and share
resources as if they were one giant computer.

The master is the system that controls the cluster, and a slave or
worker is a machine that performs computations and responds to
the master’s requests.
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Some Basic Terminology

Since this is Los Angeles, here is fun fact:

In Los Angeles, officials pointed out that such terms as ”master”
and ”slave” are unacceptable and offensive, and equipment
manufacturers were asked not to use these terms. Some
manufacturers changed the wording to primary / secondary
(Source: CNN).

I apologize if I offend anyone, but I use slave and worker

interchangeably depending on the documentation’s terminology.
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MPI snow

Explicit Parallelism in R

snowfall

snow

Rmpi nws sockets

foreach
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MPI snow

Message Passing Interface (MPI) Basics

MPI defines an environment where programs can run in parallel
and communicate with each other by passing messages to each
other. There are two major parts to MPI:

1 the environment programs run in

2 the library calls programs use to communicate

The first is usually controlled by a system administrator. We will
discuss the second point above.
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MPI snow

Message Passing Interface (MPI) Basics

MPI is so preferred by users because it is so simple to use.
Programs just use messages to communicate with each other. Can
you think of another successful systems that functions using
message passing? (the Internet!)

Each program has a mailbox (called a queue).

Any program can put a message into the another program’s
mailbox.

When a program is ready to process a message, it receives a
message from its own mailbox and does something with it.
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MPI snow

Message Passing Interface (MPI) Basics

Machine1

Machine2

Queue1 Program1

Queue3

Program3

Queue2

Program2

receive

sendsend

send
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MPI snow

MPI Message Passing Interface

The package Rmpi provides an R interface/wrapper to MPI such
that users can write parallel programs in R rather than in C, C++
or Fortran. There are various flavors of MPI

1 MPICH and MPICH2

2 LAM-MPI

3 OpenMPI
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MPI snow

Installing Rmpi and its Prerequisites

On MacOS X:

1 Install lam7.1.3 from
http://www.lam-mpi.org/download/files/lam-7.1.3-1.dmg.gz.

2 Edit the configuration file as we will see in a bit.

3 Build Rmpi from source, or use the Leopard CRAN binary.

4 To install from outside of R, use sudo R CMD INSTALL Rmpi xxx.tgz.

NOTE: These instructions have not been updated for Snow Leopard!
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MPI snow

Installing Rmpi and its Prerequisites

On Windows:

1 MPICH2 is the recommended flavor of MPI.

2 Instructions are also available for DeinoMPI.

3 Installation is too extensive to cover here. See instructions at
http://www.stats.uwo.ca/faculty/yu/Rmpi/windows.htm
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MPI snow

Installing Rmpi and its Prerequisites

Linux installation depends very much on your distribution and the
breadth of its package repository.

1 Install lam using sudo apt-get install liblam4 or
equivalent.

2 Install lam4-dev (header files, includes etc.) using sudo

apt-get install lam4-dev or equivalent.

3 Edit the configuration file as we will see in a bit.
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MPI snow

Configuring LAM/MPI

1 LAM/MPI must be installed on all machines in the cluster.

2 Passwordless SSH should/must be configured on all machines in the
cluster.

3 Create a blank configuration file, anywhere. It should contain the host
names (or IPs) of the machines in the cluster and the number of CPUs on
each. For my trivial example on one machine with 2 CPUs:

localhost cpu=2

For a more substantial cluster,

euler.bytemining.com cpu=4

riemann.bytemining.com cpu=2

gauss.bytemining.com cpu=8

4 Type lamboot <path to config file> to start, and lamhalt to stop.
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MPI snow

Rmpi Demonstration Code for your Reference

1 library(Rmpi)

2 # Spawn as many slaves as possible

3 mpi.spawn.Rslaves ()

4 # Cleanup if R quits unexpectedly

5 .Last <- function (){

6 if (is.loaded("mpi_initialize")){

7 if (mpi.comm.size (1) > 0){

8 print("Please use mpi.close.Rslaves ()

to close slaves.")

9 mpi.close.Rslaves ()

10 }

11 print("Please use mpi.quit() to quit R")

12 .Call("mpi_finalize")

13 }

14 }
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MPI snow

Rmpi Demonstration Code for your Reference

15 # Tell all slaves to return a message identifying

themselves

16 mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",

mpi.comm.size()))

17

18 # Tell all slaves to close down , and exit the

program

19 mpi.close.Rslaves ()

20 mpi.quit()
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MPI snow

Rmpi Demonstration

Demonstration time!
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MPI snow

Rmpi Program Structure

The basic structure of a parallel program in R:

1 Load Rmpi and spawn the slaves.

2 Write any necessary functions.

3 Wrap all code the slaves should run into a worker function.

4 Initialize data.

5 Send all data and functions to the slaves.

6 Tell the slaves to execute their worker function.

7 Communicate with the slaves to perform the computation*.

8 Operate on the results.

9 Halt the slaves and quit.

* can be done in multiple ways
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MPI snow

Communicating with the Slaves

Three ways to communicate with slaves.

1 “Brute force” : If the problem is “embarrassingly parallel”,
divide the problem into n subproblems and give the n slaves
their data and functions. n ≤ the number of slaves.

2 Task Push: There are more tasks than slaves. Worker
functions loop and retrieve messages from the master until
there are no more messages to process. Tasks are piled at the
slave end.

3 Task Pull: Good when the number of tasks >> n. When a
slave completes a task, it asks the master for another task.
Preferred.
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MPI snow

Example of Task Pull: Worker function

Task Pull: code walkthrough
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MPI snow

Rmpi Demonstration

The Fibonacci numbers can be computed recursively using the
following recurrence relation,

Fn = Fn−1 + Fn−2, n ∈ N+

1 fib <- function(n)

2 {

3 if (n < 1)

4 stop("Input must be an integer >= 1")

5 if (n == 1 | n == 2)

6 1

7 else

8 fib(n-1) + fib(n-2)

9 }
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MPI snow

A Snake in the Grass

1 Fibonacci using sapply(1:25, fib)

user system elapsed

1.990 0.000 2.004

2 Fibonacci using Rmpi

user system elapsed

0.050 0.010 2.343

But how can that be???
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MPI snow

A Snake in the Grass

Is parallelization always a good idea? NO!

Setting up slaves, copying data and code is very costly
performance-wise, especially if they must be copied across a
network (such as in a cluster).

General Rule (in Ryan’s words):
“Only parallelize with a certain method if the cost of computation
is (much) greater than the cost of setting up the framework.”
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MPI snow

A Snake in the Grass

In an effort to be generalist, I used the Fibonacci example, but

T (fib) << T (MPI setup)

so we do not achieve the expected boost in performance.

For a more comprehensive (but much more specific) example, see
the 10-fold cross validation example at
http://math.acadiau.ca/ACMMaC/Rmpi/examples.html.
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MPI snow

Example of Submitting an R Job to MPI

1 # Run the job. Replace with whatever R script should run

2 mpirun -np 1 R --slave CMD BATCH task_pull.R
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MPI snow

Wrapping it Up...The Code, not the Presentation!

Rmpi is flexible and versatile for those that are familiar with MPI
and clusters in general. For everyone else, it may be frightening.

Rmpi requires the user to deal with several issues explicitly

1 sending data and functions etc. to slaves.

2 querying the master for more tasks

3 telling the master the slave is done

There must be a better way for the rest of us!
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MPI snow

The snow Family

Snow and Friends:

1 snow

2 snowFT*

3 snowfall

* - no longer maintained.
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MPI snow

snow: Simple Network of Workstations

Provides an interface to several parallelization packages:

1 MPI: Message Passing Interface, via Rmpi

2 NWS: NetWork Spaces via nws

3 PVM: Parallel Virtual Machine

4 Sockets via the operating system

All of these systems allow intrasystem communication for working
with multiple CPUs, or intersystem communication for working
with a cluster.
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MPI snow

snow: Simple Network of Workstations

Most of our discussion will be on snowfall, a wrapper to snow,
but the API of snow is fairly simple.

1 makeCluster sets up the cluster and initializes its use with R
and returns a cluster object.

2 clusterCall calls a specified function with identical
arguments on each node in the cluster.

3 clusterApply takes a cluster, sequence of arguments, and a
function and calls the function with the first element of the
list on first node, second element on second node. At most,
the number of elements must be the number of nodes.

4 clusterApplyLB same as above, with load balancing.
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MPI snow

snow: Simple Network of Workstations

Most of our discussion will be on snowfall, a wrapper to snow,
but the API of snow is fairly simple.

1 clusterExport assigns the global values on the master to
variables of the same names in global environments of each
node.

2 parApply parallel apply using the cluster.

3 parCapply, parRapply, parLapply, parSapply parallel
versions of column apply, row apply and the other apply
variants.

4 parMM for parallel matrix multiplication.
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MPI snow

snowfall

snowfall adds an abstraction
layer (not a technical layer) over
the snow package for better
usability. snowfall works with
snow commands.

For computer scientists,
snowfall is a wrapper to snow.
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MPI snow

snowfall

The point to take home about snowfall, before we move further:

snowfall uses list functions for parallelization. Calculations are
distributed onto workers where each worker gets a portion of the
full data to work with.

Bootstrapping and cross-validation are two statistical methods that
are trivial to implement in parallel.
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MPI snow

snowfall Features

The snowfall API is very similar to the snow API and has the
following features

1 all wrapper functions contain extended error handling.

2 functions for loading packages and sources in the cluster

3 functions for exchanging variables between cluster nodes.

4 changing cluster settings does not require changing R code.
Can be done from command line.

5 all functions work in sequential mode as well. Switching
between modes requires no change in R code.

6 sfCluster
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MPI snow

Getting Started with snowfall

The snowfall API is very similar to the snow API and has the
following features

1 Install R, snow, snowfall, rlecuyer (a network random number
generator) on all hosts (masters and slaves).

2 Enable passwordless login via SSH on all machines (including the
master!). This is trivial, and there are tutorials on the web. This varies by
operating system.

3 If you want to use a cluster, install the necessary software and R packages.

4 If you want to use sfCluster (LAM-MPI only), install LAM-MPI first as
well as Rmpi and configure your MPI cluster.*

5 If you want to use sfCluster, install the sfCluster tool (a Perl script).*

* = more on this in a bit!
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MPI snow

The Structure of a snowfall Program

1 Initialize with sfInit. If using sfCluster, pass no parameters.

2 Load the data and prepare the data for parallel calculation.

3 Wrap computation code into a function that can be called by an R list
function.

4 Export objects needed in the calculation to cluster nodes and load the
necessary packages on them.

5 Start a network random number generator to ensure that each node
produces random numbers independently. (optional)

6 Distribute the calculation to the cluster using a parallel list function.

7 Stop the cluster.
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MPI snow

snowfall Example

For this example/demo we will look at the pneumonia status of a
random sample of people admitted to an ICU. We will use the
bootstrap to obtain an estimate of a regression coefficient based
on “subdistribution functions in competing risks.”
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MPI snow

snowfall Example: Step 1

1 #Load necessary libraries

2 library(snowfall)

3

4 # Initialize

5 sfInit(parallel=TRUE , cpus=2, type="SOCK", socketHosts=

rep("localhost" ,2))

6 #parallel=FALSE runs code in sequential mode.

7 #cpus=n, the number of CPUs to use.

8 #type can be "SOCK" for socket cluster , "MPI", "PVM" or "

NWS"

9 # socketHosts is used to specify hostnames/IPs for

10 #remote socket hosts in "SOCK" mode only.
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MPI snow

snowfall Example: Step 2/3

11 #Load the data.

12 require(mvna)

13 data(sir.adm)

14 #using a canned dataset.

15

16 #create a wrapper that can be called by a list function.

17 wrapper <- function(idx) {

18 index <- sample (1: nrow(sir.adm), replace=TRUE)

19 temp <- sir.adm[index , ]

20 fit <- crr(temp$time , temp$status , temp$pneu)

21 return(fit$coef)

22 }
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MPI snow

snowfall Example: Step 4

24 #export needed data to the workers and load packages on

them.

25 sfExport("sir.adm") #export the data (multiple objects in

a list)

26 sfLibrary(cmprsk) #force load the package (must be

installed )
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MPI snow

snowfall Example: Steps 5, 6, 7

27 #STEP 5: start the network random number generator

28 sfClusterSetupRNG ()

29 #STEP 6: distribute the calculation

30 result <- sfLapply (1:1000 , wrapper)

31 #return value of sfLapply is always a list!

32

33 #STEP 7: stop snowfall

34 sfStop ()

This is CRUCIAL. If you need to make changes to the cluster, stop
it first and then re-initialize. Stopping the cluster when finished
ensures that there are no processes going rogue in the background.

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



MPI snow

snowfall Demonstration

For this demonstration, suppose Ryan’s Ubuntu server has a split
personality (actually it has several) and that its MacOS X side
represents one node, and its Ubuntu Lucid Lynx side represents a
second node. They communicate via sockets.

Demonstration here.
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MPI snow

snowfall: Precomputed Performance Comparison

Using a dual-core Ubuntu system yielded the following timings:

1 Sequential, using sapply(1:1000, wrapper)

user system elapsed

98.970 0.000 99.042

2 Parallel, using sfLapply(1:1000, wrapper)

user system elapsed

0.170 0.180 50.138
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MPI snow

snowfall and the Command Line

snowfall can also be activated from the command-line.

1 #Start a socket cluster on localhost with 3 processors .

2 R CMD BATCH myProgram.R --args --parallel --cpus=3

3 # myProgram.R is the parallel program and --parallel

specifies parallel mode.

4

5 #Start a socket cluster with 6 cores (2 on localhost , 3

on "a" and 1 on "b")

6 R --args --parallel --hosts=localhost:2,a:3,b:1 <

myProgram.R

7

8 #Start snowfall for use with MPI on 4 cores on R

interactive shell.

9 R --args --parallel --type=MPI --cpus=4
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MPI snow

snowfall’s Other Perks

snowfall has other cool features that you can explore on your
own...
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MPI snow

snowfall’s Other Perks: Load Balancing

In a cluster where all nodes have comparable performance
specifications, each node will take approximately the same time to
run.

When the cluster contains many different machines, speed depends
on the slowest machine, so faster machines have to wait for its
slow poke friend to catch up before continuing. Load balancing
can help resolve this discrepancy.

By using sfClusterApplyLB in place of sfLapply, faster
machines are given further work without having to wait for the
slowest machine to finish.
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MPI snow

snowfall’s Other Perks: Saving and Restoring
Intermediate Results

Using sfClusterApplySR in place of sfLapply allows long
running clusters to save intermediate results after processing n
indices (n is a number of CPUs). These results are stored in a
temporary path. For more information, use ?sfClusterApplySR.
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MPI snow

snowfall apply

By the way, while we are discussing a bunch of different functions...

There are other apply variants in snowfall such as

sfLapply( x, fun, ... )

sfSapply( x, fun, ..., simplify = TRUE, USE.NAMES = TRUE )

sfApply( x, margin, fun, ... )

sfRapply( x, fun, ... )

sfCapply( x, fun, ... )

The documentation simply chooses to use sfLapply for
consistency.
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MPI snow

snowfall and snowFT

snowFT is the fault tolerance extension for snow, but it is not
available in snowfall. The author states that this is due to the
lack of an MPI implementation of snowFT.

But you’re not missing much as snowFT does not appear to be
maintained any longer.

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



MPI snow

snowfall and sfCluster

sfCluster is a Unix command-line tool written in Perl that serves as a
management system for cluster and cluster programs. It handles cluster setup,
as well as monitoring performance and shutdown. With sfCluster, these
operations are hidden from the user.

Currently, sfCluster works only with LAM-MPI.

sfCluster can be downloaded from

http://www.imbi.uni-freiburg.de/parallel/files/sfCluster 040.tar.gz.
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MPI snow

snowfall and sfCluster

1 sfCluster must be installed on every participating node in
the cluster.

2 Specifying the machines in the cluster is done in a hostfile,
which is then passed to LAM/MPI!

3 Call sfNodeInstall --all afterwards.

4 More options are in the README shipped with sfCluster.
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MPI snow

sfCluster Features

sfCluster wants to make sure that your cluster can meet your
needs without exhausting resources.

1 It checks your cluster to find machines with free resources if
available. The available machines (or even the available parts
of the machine) are built into a new sub-cluster which belongs
to the new program. This is implemented with LAM sessions.

2 It can optionally monitor the cluster for usage and stop
programs if they exceed their memory allotment, disk
allotment, or if machines start to swap.

3 It also provides diagnostic information about the current
running clusters and free resources on the cluster including
PIDs, memory use and runtime.
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MPI snow

sfCluster is Preventative Medicine for your Jobs

sfCluster execution follows these steps

1 Tests memory usage by running your program in sequential
mode for 10 minutes to determine the maximum amount of
RAM necessary on the slaves.

2 Detect available resources in the cluster and form a
sub-cluster.

3 Start LAM/MPI cluster using this sub-cluster of machines.

4 Run R with parameters for snowfall control.

5 Do over and over: Monitor execution and optionally display
state of the cluster or write to logfiles.

6 Shutdown cluster on fail, or on normal end.
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MPI snow

Some Example Calls to sfCluster

1 #Run an R program with 10 CPUs and a max of 1GB of

RAM in monitoring mode.

2 sfCluster -m --cpus =10 --mem=1G myProgram.R

3

4 #Run nonstopping cluster with quiet output

5 nohup sfCluster -b --cpus =10 --mem=1G myProgram.R

--quiet

6

7 #Start R interactive shell with 8 cores and 500MB

of RAM.

8 sfCluster -i --cpus=8 --mem =500
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MPI snow

sfCluster Administration

Overview of
running clusters in sfCluster with other important information.
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MPI snow

Why Not use x for Explicit Parallel Computing?

borrowed from State-of-the-art in Parallel Computing with R, from Journal of

Statistical Software August 2009, Volume 31, Issue 1.
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multicore doMC/foreach

Implicit Parallelism

Unlike explicit parallelism where the user controls (and can mess
up) most of the cluster settings, with implicit parallelism most of
the messy legwork in setting up the system and distributing data is
abstracted away.

Most users probably prefer implicit parallelism.
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multicore doMC/foreach

multicore

multicore provides functions for parallel execution of R code on
systems with multiple cores or multiple CPUs. Distinct from other
parallelism solutions, multicore jobs all share the same state
when spawned.

The main functions in multicore are

mclapply, a parallel version of lapply.

parallel, do something in a separate process.

collect, get the results from call(s) to parallel
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multicore: mclapply

mclapply is a parallel version of lapply. Works similar to lapply, but has
some extra parameters:

mclapply(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE,

mc.silent = FALSE, mc.cores = getOption("cores"))

1 mc.preschedule=TRUE controls how data are allocated to jobs/cores.

2 mc.cores controls the maximum number of processes to spawn.

3 mc.silent=TRUE suppresses standard output (informational messages)
from each process, but not errors (stderr).

4 mc.set.seed=TRUE sets the processes’ seeds to something unique,
otherwise it is copied with the other state information.
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multicore: Pre-Scheduling

mc.preschedule controls how data are allocated to processes.

if TRUE, then the data is divided into n sections and passed to
n processes (n is the number of cores to use).

if FALSE, then a job is constructed for each data value
sequentially, up to n at a time.

The author provides some advice on whether to use TRUE or FALSE
for mc.preschedule.

TRUE is better for short computations or large number of
values in X.

FALSE is better for jobs that have high variance of completion
time and not too many values of X.
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Example: mclapply

Let’s use mclapply to convert about 10,000 lines of text (tweets)
to JSON.

1 library(multicore)

2 library(rjson)

3 twitter <- readLines("twitter.dat")

4 mclapply(twitter ,

5 FUN=function(x) {

6 return(fromJSON(x))

7 },

8 mc.preschedule=TRUE , mc.cores =8)
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Example: mclapply Performance

For this example, processing time improves dramatically using all 8-cores.
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Notice that using pre-scheduling yields superior performance here, decreasing

processing time from 3 minutes to 25 seconds.
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Example: mclapply Performance

So, the higher mc.cores is, the better, right? NO! On a 4-core system, note
that performance gain past 4 cores is negligible.
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It is not a good idea to set mc.cores higher than the number of cores in the

system. Setting it too high will “fork bomb” the system.

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



multicore doMC/foreach

parallel and collect

parallel (or mcparallel) allows us to create an external process
that does something. After hitting enter, R will not wait for the
call to finish.

parallel(expr, name, mc.set.seed = FALSE, silent = FALSE)

This function takes as parameters:

some expression to be evaluated, expr.

an optional name for the job, name.

miscellaneous parameters mc.set.seed and silent.
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parallel and collect

collect allows us to retrieve the results of the spawned processes.

collect(jobs, wait = TRUE, timeout = 0, intermediate = FALSE)

This function takes as parameters:

jobs:

a list of variable names that were bound using parallel.
an integer vector of Process IDs (PID). We can get the PID by
typing the variable associated with the process and hitting
ENTER.

whether or not to wait for the processes in jobs to end. If
FALSE, will check for results in timeout seconds.

a function, intermediate, to execute while waiting for
results.
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Demonstration: parallel and collect

As a quick example, consider a silly loop that simply keeps the
CPU busy incrementing a variable i for duration iterations.

1 my.silly.loop <- function(j, duration) {

2 i <- 0

3 while (i < duration) {

4 i <- i + 1

5 }

6 #When done , return TRUE to indicate that this

function does *something*

7 return(paste("Silly", j, "Done"))

8 }

9 silly.1 <- parallel(my.silly.loop(1, 10000000))

10 silly.2 <- parallel(my.silly.loop(2, 5000000))

11 collect(list(silly.1, silly .2))

Trivially, silly.2 will finish first, but we will wait (block) for both
jobs to finish.
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Demonstration: parallel and collect

Demonstration here.
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Demonstration: parallel and collect

We can also be impatient and only wait s seconds for a result, and
then move along with our lives. If the jobs exceed this time limit,
we must poll for the results ourselves. We set wait=FALSE and
provide timeout=2 for a 2 second delay. (Yes, I am impatient)

1 silly.1 <- parallel(my.silly.loop(1, 10000000))

2 silly.2 <- parallel(my.silly.loop(2, 5000000))

3 collect(list(silly.1, silly .2), wait=FALSE , timeout =2)

4 #we can get the results later by calling ,

5 collect(list(silly.1, silly .2))

Trivially, silly.2 will finish first, but we will wait (block) for both
jobs to finish.
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Demonstration: parallel and collect

Demonstration here.
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Demonstration: parallel and collect

We can ask R to execute some function while we wait for a result.

1 status <- function(results.so.far) {

2 jobs.completed <- sum(unlist(lapply(results.so.far ,

FUN=function(x) { !is.null(x) })))

3 print(paste(jobs.completed , "jobs completed so far.")

)

4 }

5 silly.1 <- parallel(my.silly.loop(1, 10000000))

6 silly.2 <- parallel(my.silly.loop(2, 5000000))

7 results <- collect(list(silly.1, silly .2), intermediate=

status)

Trivially, silly.2 will finish first, but we will wait (block) for both
jobs to finish.
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Demonstration: parallel and collect

Demonstration here.
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multicore Gotchas

Weird things can happen when we spawn off processes.

1 never use any on-screen devices or GUI elements in the
expressions passed to parallel. Strange things will happen.

2 CTRL+C will interrupt the parent process running in R, but
orphans the child processes that were spawned. If this
happens, we must clean up after ourselves by killing off the
children and then garbage collecting.

1 kill(children ())

2 collect ()

Child processes that have finished or died will remain until
they are collected!

3 I am going to hell for the previous bullet...
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Other multicore Features

multicore is a pretty small package, but there are some things
that we did not touch on. In this case, it is a good idea to not
discuss them...

1 low-level function, should you ever need them: fork,
sendMaster, process. Tread lightly though, you know what
they say about curiosity...

2 the user can send signals to child processes, but this is rarely
necessary.

3 Limitation! Cannot be used on Windows because it lacks the
fork system call. Sorry. However, there is an experimental
version that works with Windows, but it is not stable.
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doMC/foreach

foreach allows the user to iterate through a set of values parallel.

By default, iteration is sequential, unless we use a package
such as doMC which is a parallel backend for foreach.

doMC is an interface between foreach and multicore.

Windows is supported via an experimental version of
multicore.

only runs on one system. To use on a cluster, can use the
doNWS package from REvolution Computing.
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doMC/foreach Usage

1 Load the doMC and foreach libraries.

2 MUST register the parallel backend: registerDoMC().

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



multicore doMC/foreach

doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

... controls how ex is evaluated. This can be an iterator such as icount(n),
that counts from 1 to n.

.combine is the action used to combine results from each iteration. rbind will
append rows to a matrix, for example. Can also use arithmetic operations, or
write your own function. By default, output is returned as a list.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

.final is a function to call once all results have been collected. For example,
you may want to convert to a data.frame.

.inorder=TRUE will return the results in the same order that they were
submitted. Setting to FALSE gives better performance.

.errorhandling specifies what to do if a task encounters an error. stop kills
the entire job, remove ignores the input that caused the error, or pass just
ignores the error and returns the result.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,

.multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2,

.errorhandling=c(’stop’, ’remove’, ’pass’), .packages=NULL,

.export=NULL, .noexport=NULL, .verbose=FALSE)

when(cond)

e1 %:% e2

obj %do% ex

obj %dopar% ex

times(n)

.packages specifies a vector of package names that each worker needs to load.

.verbose=TRUE can be useful for troubleshooting.

For the other parameters, check out the documentation for foreach.
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doMC/foreach Usage

A foreach is an object and has the following syntax and parameters.

foreach(...) when(cond) %dopar% ex times(n)

when(cond) causes the loop to execute only if cond evaluates to TRUE.

%dopar% causes ex to execute in parallel. Can replace with %do% to execute in
sequence (for debugging).

times(n) executes the entire statement n times.

Can also nest foreach statements using syntax like foreach(...) %:%

foreach(...).
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doMC/foreach Example of a Nested for Loop

1 sim <- function(a, b) { return (30*a + b**) }

2 avec <- seq (1 ,100); bvec <- seq(5,500,by=5)

3 x <- matrix(0,length(avec),length(bvec))

4 for (j in 1: length(bvec)) {

5 for (i in 1: length(avec)) {

6 x[i, j] <- sim(avec[i], bvec[j])

7 }

8 }

9 method .1 <- x

10

11 #with foreach

12 x <- foreach(b = bvec , .combine = "cbind") %:%

13 foreach(a = avec , .combine = "c") %dopar% {

14 sim(a,b)

15 }

16 method .2 <- x

17 all(method .1 == method .2) #both loops yield the same

result.
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doMC/foreach Example of a Nested for Loop

The example was trivial because each iteration performs a
negligible amount of work! If we were to replace %do% with
%dopar%, we would actually get longer processing time, which
brings me to this point...

“Each iteration should execute computationally-intensive
work. Scheduling tasks has overhead, and can exceed the

time to complete the work itself for small jobs.”
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foreach Demonstration: Bootstrapping

Here is a better example. How long does it take to run 10,000 bootstrap iterations (in
parallel) on a 2-core MacBook Pro? What about an 8-core MacPro?

1 data(iris)

2

3 iris.sub <- iris[which(iris[, 5] != "setosa"), c(1,5)]

4 trials <- 10000

5 result <- foreach(icount(trials), .combine=cbind) %dopar%

{

6 indices <- sample (100, 100, replace=TRUE)

7 glm.result <- glm(iris.sub[indices , 2]~iris.sub[

indices , 1], family=binomial("logit"))

8 coefficients(glm.result) #this is the result!

9 }
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foreach Demonstration: Bootstrapping

Demonstration on 2-core server, here, if time.
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foreach Demonstration: Bootstrapping Performance

On an 8-core system, the processing time for this operation decreased from 59s
using one core, to about 15s using 8-cores. This is about a 4x speedup. We
may expect an 8x speedup, but the improvement is dependent on many
variables including system load, CPU specifications, operating system, etc.
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foreach Nerd Alert: quicksort

If you are interested, here is an implementation of quicksort in R, using
foreach!

1 qsort <- function(x) {

2 n <- length(x)

3 if (n == 0) {

4 x

5 } else {

6 p <- sample(n, 1)

7 smaller <- foreach(y=x[-p], .combine=c) %:% when(y <=

x[p]) %do% y

8 larger <- foreach(y=x[-p], .combine=c) %:% when(y >

x[p]) %do% y

9 c(qsort(smaller), x[p], qsort(larger))

10 }

11 }

12 qsort(runif (12))
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foreach Additional Features

foreach, and related packages, provide a lot more functionality that may be of
interest.

foreach can be used on a cluster by using a different parallel backend.
doMC uses multicore whereas doNWS and doSNOW use nws and snow

respectively. These are maintained by Revolution Computing.

in this talk we assumed that we iterate over integers/counters. We can
also iterate over objects such as elements in a vector by using custom
iterators, using the iterators package.
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GPUs: Towards the Future

GPU = Graphics Processing Unit

GPUs power video cards and draw pretty pictures on the screen.

They are also VERY parallel, very fast, cheap (debatable), and
low-power. However, they suffer from low bandwidth.
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GPUs: Towards the Future

In 2008, the fastest computer in the world was the PlayStation.
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GPUs: Towards the Future

Here are just a few numbers for you.

1 PC CPU: 1-3Gflop/s average

2 GPU: 100Gflop/s average.
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GPUs: Towards the Future

High level languages such as CUDA and Brook+ exist for
interacting with a GPU with available libraries including BLAS,
FFT, sorting, sparse multiply etc.

But still hard to use with complicated algorithms because...

Pitfall: Data transfer is very costly and slow into GPU space.

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



GPUs: Towards the Future

There are two packages currently for working with GPUs in R and
your mileage may vary.

1 gputools provides R interfaces to some common statistical
algorithms using Nvidia’s CUDA language and its CUBLAS
library as well as EMI Photonics’ CULA libraries.

2 cudaBayesreg provides a CUDA parallel implementation of a
Bayesian Multilevel Model for fMRI data analysis.

3 More to come!

Ryan R. Rosario

Taking R to the Limit: Part I - Parallelization Los Angeles R Users’ Group



In Conclusion

1 R provides several ways to parallelize tasks.

2 They are pretty easy to use.

3 They do not fall victim to the Swiss Cheese Phenomenon
under typical usage.

4 Worth learning as more and more packages begin to suggest
them (tm and some other NLP packages).
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In Conclusion: Other Explicit Parallelism Packages

There are too many HPC packages to mention in one (even two)
session. Here is a list of others that may be of interest:

1 rpvm, no longer maintained

2 nws, NetWorkSpaces: parallelism for scripting languages.

3 biopara, socket based, fault tolerance, load balancing.

4 taskPR parallel execution of tasks with LAM/MPI.

5 Rdsm threads-like parallel execution.
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In Conclusion: Other Implicit Parallelism Packages

There are too many HPC packages to mention in one (even two)
session. Here is a list of others that may be of interest:

1 pnmath uses OpenMP.

2 fork, mimics Unix fork command.
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A Caveat

Q: But what if I want my tasks to run faster?
A: Parallelization does not accomplish that.

1 Throw money at faster hardware.

2 Refactor your code.

3 Interface R with C, C++ or FORTRAN.

4 Interface with C and a parallelism toolkit like OpenMP.

5 Use a different language altogether (functional languages like
Clojure, based on Lisp, and Scala are emerging as popular).
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Next Time

Next time we will focus more on issues with Big Data and data
that does not fit in available RAM. Some of the content will
overlap with our talk today.

1 Using Map/Reduce via mapReduce, Hadoop, rhipe and
HadoopStreaming

2 bigmemory

3 ff

4 Some discussion of sparse matrices.
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Next time we will focus more on issues with Big Data and data
that does not fit in available RAM. Some of the content will
overlap with our talk today.

1 Using Map/Reduce via mapReduce, Hadoop, rhipe and
HadoopStreaming

2 bigmemory

3 ff

4 Some discussion of sparse matrices.
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Keep in Touch!

My email: ryan@stat.ucla.edu

My blog: http://www.bytemining.com

Follow me on Twitter: @datajunkie
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The End

Questions?
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Thank You!
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