Want to Build a Research Server?

I am usually pretty reserved with cash, but after working full-time for six months, I finally decided to spend some of my money on building a new research development server. This process was long overdue and the reason it took me so long to commit to this project was all of the new technology developed since building my last server. This “new technology” can be pretty confusing unless one specializes in computer architecture. I want to share what I have learned throughout this process, while giving some background. These are only my opinions, and I may be wrong on some things as I am not a hardware expert. I encourage you to read and learn more on your own.

The CPU/Processor

If you are reading this article, I probably do not need to explain what the CPU/processor does. For high performance computing, you will want to get a CPU that is very “fast” and also has multiple cores. The definition of the word “fast” is in the eyes of the beholder and typically refers to more than just clock speed (GHz). In the constant war between AMD and Intel, I stick with Intel. AMD processors are powerful, but they seem to have […]

Review of 2011 Data Scientist Summit

Some time over the past 6 weeks I randomly saw a tweet announcing the “Data Scientist Summit” and shortly below it I saw that it would be held in Las Vegas at the Venetian. Being a Data Scientist myself is reason enough to not pass up this opportunity, but Vegas definitely sweetens the deal! On Wednesday I woke up at 6am to partake on the 5.5 hour voyage to Las Vegas.

The Pre-Party

The Venetian and all close hotels were booked, so I ended up at the Aria; a new experience. The hotel is beautiful and very ritzy. I had heard that the rooms were very technologically advanced but I wasn’t prepared for the recorded welcome message, music and automatic shades opening upon entry to the room. The Aria is a geek’s paradise. Everything is computerized. Key cards are “waved” rather than swiped, lights are turned on/off and dimmed by use case (“sleep”, “read” etc.), rather than manually. There are no paper “Do Not Disturb” signs; rather, a switch on the wall (or via TV) toggles an indicator light outside the door. And the best part… Internet is FREE!

The rhododendrons hydrangeas are real!
Work […]

EC2 Trials and Tribulations, Part 1 (Web Crawling)

Elastic Compute Cloud (EC2) is a service provided a Amazon Web Services that allows users to leverage computing power without the need to build and maintain servers, or spend money on special hardware. The idea is simple, the user “boots” up one or more machines and then accesses those machines as if they were logged into any other machine remotely. I used EC2 and Elastic MapReduce extensively for my M.S. thesis last spring, but mainly used its large memory capabilities rather than its potential for explicit parallelism.

Recently, I ran a crawling job on EC2 using a parellel crawler I wrote in Python with twill. Using EC2 poses its own challenges. Using parallel code poses more challenges. Combining these two facts with the fact that crawling is I/O bound can create some more interesting challenges. If you have taken a course in operating systems, you have heard this stuff over and over again. So have I, but I am stubborn. I tend to learn lessons from experience, and this was no exception. Through this series of posts, I want to point out difficulties and “gotchas” that are important to keep in mind when using EC2, and in this post, with […]

Some Lessons in Production Development (Hadoop) - Part 1

Wow. I can’t believe it has been a month since I have posted. On December 1, I started a new chapter in my life, working full time as a Data Scientist at the Rubicon Project. Needless to say, that has been keeping me occupied, as well as thinking about working on my dissertation. For the time, I am getting settled in here.

When I accepted this position, one of my hopes/expectations would be to become professionally competent and confident in C, Java, Python, Hadoop, and the software development process rather than relying on hobby and academic knowledge. That is something a degree cannot help with. It has been a great experience, although very frustrating, but that is expected when jumping into development professionally.
    

I am writing this post to chronicle what I have learned about using Hadoop in production and how it majorly differs from its use in my research and personal analysis.
To start, I was asked to check out a huge stack of code from a Subversion repository. But then what?

But you’re a Computer Scientist! This should be easy!

The first part is true, but there is a stark difference between a garden variety computer scientist and one that converts from […]

My Day at ACM Data Mining Camp III

My first time at ACM Data Mining Camp was so awesome, that I was thrilled the make the trip up to San Jose for the November 2010 version. In July, I gave a talk at the Emerging Technologies for Online Learning Symposium conference with a faculty member in the Department of Statistics, at the Fairmont. The place was amazing, and I told myself I would save up to stay there. This trip gave me an opportunity to check it out, and pretend that I am posh for a weekend ;). The night I arrived I had the best dinner and drinks at this place called Gordon Biersch. I had the best garlic fries and BBQ burger I have ever had. I ate it with a Dragonfruit Strawberry Mojito, the Barbados Rum Runner, and finished off with a Long Island Iced Tea, so the drinks were awesome as well. Anyway, to the point of this post…

The next morning I made the short trek to the PayPal headquarters for a very long 9am-8pm day. Since I came up here for the camp, I wanted to make the most of it and paid the $30 for the morning session, even though I had […]

Exciting Tools for Big Data: S4, Sawzall and mrjob!

This week, a few different big data processing tools were released to the open-source community. I know, I know, this is probably the 1000th blog post about this, and perhaps the train has left the station without me, but here I am.

Yahoo’s S4: Distributed Stream Computing Platform

First off, it must be said. S4 is NOT real-time map-reduce! This is the meme that has been floating around the Internets lately.

S4 is a distributed, scalable, partially fault-tolerant, pluggable platform that allows users to create applications that process unbounded streaming data. It is not a Hadoop project. A matter of fact, it is not even a form of map-reduce. S4 was developed at Yahoo for personalization of search advertising products. Map-reduce, so far, is not a great platform for dealing with streaming/non-stored data.

Pieces of data, apparently called events, are sent and consumed by a Processing Element (yes, PE, but not the kind that requires you to sweat). The PEs can do one of two things:

emit another event that will be consumed by another PE, or
publish some result

Streaming data is different from non-streaming data in that the user does not know how much data will be transmitted, and at what rate. Analysis on […]

Taking R to the Limit, Part II - Large Datasets in R

For Part I, Parallelism in R, click here.

Tuesday night I again had the opportunity to present on high performance computing in R, at the Los Angeles R Users’ Group. This was the second part of a two part series called “Taking R to the Limit: High Performance Computing in R.” Part II discussed ways to work with large datasets in R. I also tied in MapReduce into the talk. Unfortunately, there was too much material and I had originally planned to cover Rhipe, using R on EC2 and sparse matrix libraries.

Slides

My edited slides are posted on SlideShare, and available for download here.

Taking R to the Limit (High Performance Computing in R), Part 2 — Large Datasets, LA R Users' Group 8/17/10

View more presentations from Ryan Rosario.

Topics included:

bigmemory, biganalytics and bigtabulate
ff
HadoopStreaming
brief mention of Rhipe

Code

The corresponding demonstration code is here.

Data

Since this talk discussed large datasets, I used some, well, large datasets. Some demonstrations used toy data including trees and the famous iris dataset included in base R. To load these, just use the call library(iris) or library(trees).

Large datasets:

On-Time Airline Performance data from 2009 Data Expo. This Bash script will download all of the necessary data files and create a nice dataset […]

My Experience at Hadoop Summit 2010

This week I had the opportunity the trek up north to Silicon Valley to attend Yahoo’s Hadoop Summit 2010. I love Silicon Valley. The few times I’ve been there the weather was perfect (often warmer than LA), little to no traffic, no road rage and people overall seem friendly and happy. Not to mention there are so many trees it looks like a forest!

The venue was the Hyatt Regency Great America which seemed like a very posh business hotel. Walking into the lobby and seeing a huge crowd of enthusiasts and an usher every two steps was overwhelming!

After being welcomed by the sound of the vuvuzela, we heard about some statistics about the growth of Hadoop over the years. Apparently in 2008 there were 600 attendees to Hadoop Summit and in 2010 attendance grew to 1000. The conference started with three hours of keynotes and sessions that everyone attended in one room. The tone was somewhat corporate in nature, but there were also several gems in there about how Yahoo uses Hadoop:

A user’s click streams are mapped to latent interests, similar to mapping words to interests in topic models like LSA and LDA. Yahoo uses Hadoop to recompute a user’s […]

Hitting the Big Data Ceiling in R

As a true R fan, I like to believe that R can do anything, no matter how big, how small or how complicated: there is some way to do it in R. I decided to approach my large, sparse matrix problem with this attitude. But here I sit a broken man.

There is no “native” big data support built into R, even if using the 64bit build of R. Before venturing on this endeavor, I consulted with my advisor who reassured me that R uses the state of the art for sparse matrices. That was enough for me.

My Problem

For part of my Masters thesis, I wrote code to extract all of the friends and followers out to network degree 2 to construct a “small-world” snapshot of a user via their relationships. In a graph, nodes and edges grow exponentially as the degree increases. The number of nodes was on the order of 300,000. The number of edges I predict will be around 900,000. The code is still running. This means that a dense matrix would have size . Some of you already know how this story is going to end…

The matrix is very sparse.

Very sparse.

The raw data graph.log consists of an […]

Lessons Learned from EC2

A week or so ago I had my first experience using someone else’s cluster on Amazon EC2. EC2 is the Amazon Elastic Compute Cloud. Users set up a virtual computing platform that runs on Amazon’s servers “in the cloud.” Amazon EC2 is not just another cluster. EC2 allows the user to create a disk image containing an operating system and all of the software they need to perform their computations. In my case, the disk image would contain Hadoop, R, Python and all of the R and Python packages I need for my work. This prevents the user (and the provider) from having to worry about providing or upgrading software and having compatibility issues.

No subscription is required. Users pay for the amount of resources used for the computing session. Hourly prices are very cheap, but accrue quickly. Additionally, Amazon charges for pretty much everything single thing you can do with an OS: transferring data to/from the cloud per GB, data storage per GB, CPU time per hour per core etc.

This is somewhat of a tangent, but EC2 was a brilliant business move in my opinion.

Anyway, life gets a bit more difficult when the EC2 instance you’re working with […]